| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjsn2 |
|- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |
| 2 |
|
ensn1g |
|- ( A e. C -> { A } ~~ 1o ) |
| 3 |
|
ensn1g |
|- ( B e. D -> { B } ~~ 1o ) |
| 4 |
|
pm54.43 |
|- ( ( { A } ~~ 1o /\ { B } ~~ 1o ) -> ( ( { A } i^i { B } ) = (/) <-> ( { A } u. { B } ) ~~ 2o ) ) |
| 5 |
|
df-pr |
|- { A , B } = ( { A } u. { B } ) |
| 6 |
5
|
breq1i |
|- ( { A , B } ~~ 2o <-> ( { A } u. { B } ) ~~ 2o ) |
| 7 |
4 6
|
bitr4di |
|- ( ( { A } ~~ 1o /\ { B } ~~ 1o ) -> ( ( { A } i^i { B } ) = (/) <-> { A , B } ~~ 2o ) ) |
| 8 |
7
|
biimpd |
|- ( ( { A } ~~ 1o /\ { B } ~~ 1o ) -> ( ( { A } i^i { B } ) = (/) -> { A , B } ~~ 2o ) ) |
| 9 |
2 3 8
|
syl2an |
|- ( ( A e. C /\ B e. D ) -> ( ( { A } i^i { B } ) = (/) -> { A , B } ~~ 2o ) ) |
| 10 |
9
|
ex |
|- ( A e. C -> ( B e. D -> ( ( { A } i^i { B } ) = (/) -> { A , B } ~~ 2o ) ) ) |
| 11 |
1 10
|
syl7 |
|- ( A e. C -> ( B e. D -> ( A =/= B -> { A , B } ~~ 2o ) ) ) |
| 12 |
11
|
3imp |
|- ( ( A e. C /\ B e. D /\ A =/= B ) -> { A , B } ~~ 2o ) |