Metamath Proof Explorer


Theorem prcliscplgr

Description: A proper class (representing a null graph, see vtxvalprc ) has the property of a complete graph (see also cplgr0v ), but cannot be an element of ComplGraph , of course. Because of this, a sethood antecedent like G e. W is necessary in the following theorems like iscplgr . (Contributed by AV, 14-Feb-2022)

Ref Expression
Hypothesis cplgruvtxb.v
|- V = ( Vtx ` G )
Assertion prcliscplgr
|- ( -. G e. _V -> A. v e. V v e. ( UnivVtx ` G ) )

Proof

Step Hyp Ref Expression
1 cplgruvtxb.v
 |-  V = ( Vtx ` G )
2 fvprc
 |-  ( -. G e. _V -> ( Vtx ` G ) = (/) )
3 1 eqeq1i
 |-  ( V = (/) <-> ( Vtx ` G ) = (/) )
4 rzal
 |-  ( V = (/) -> A. v e. V v e. ( UnivVtx ` G ) )
5 3 4 sylbir
 |-  ( ( Vtx ` G ) = (/) -> A. v e. V v e. ( UnivVtx ` G ) )
6 2 5 syl
 |-  ( -. G e. _V -> A. v e. V v e. ( UnivVtx ` G ) )