Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prcssprc | |- ( ( A C_ B /\ A e/ _V ) -> B e/ _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | |- ( ( A C_ B /\ B e. _V ) -> A e. _V ) |
|
| 2 | 1 | ex | |- ( A C_ B -> ( B e. _V -> A e. _V ) ) |
| 3 | 2 | nelcon3d | |- ( A C_ B -> ( A e/ _V -> B e/ _V ) ) |
| 4 | 3 | imp | |- ( ( A C_ B /\ A e/ _V ) -> B e/ _V ) |