| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfsn2 |  |-  { A } = { A , A } | 
						
							| 2 |  | ensn1g |  |-  ( A e. C -> { A } ~~ 1o ) | 
						
							| 3 |  | endom |  |-  ( { A } ~~ 1o -> { A } ~<_ 1o ) | 
						
							| 4 |  | 1sdom2 |  |-  1o ~< 2o | 
						
							| 5 |  | domsdomtr |  |-  ( ( { A } ~<_ 1o /\ 1o ~< 2o ) -> { A } ~< 2o ) | 
						
							| 6 |  | sdomdom |  |-  ( { A } ~< 2o -> { A } ~<_ 2o ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( { A } ~<_ 1o /\ 1o ~< 2o ) -> { A } ~<_ 2o ) | 
						
							| 8 | 3 4 7 | sylancl |  |-  ( { A } ~~ 1o -> { A } ~<_ 2o ) | 
						
							| 9 | 2 8 | syl |  |-  ( A e. C -> { A } ~<_ 2o ) | 
						
							| 10 | 1 9 | eqbrtrrid |  |-  ( A e. C -> { A , A } ~<_ 2o ) | 
						
							| 11 |  | preq2 |  |-  ( B = A -> { A , B } = { A , A } ) | 
						
							| 12 | 11 | breq1d |  |-  ( B = A -> ( { A , B } ~<_ 2o <-> { A , A } ~<_ 2o ) ) | 
						
							| 13 | 10 12 | imbitrrid |  |-  ( B = A -> ( A e. C -> { A , B } ~<_ 2o ) ) | 
						
							| 14 | 13 | eqcoms |  |-  ( A = B -> ( A e. C -> { A , B } ~<_ 2o ) ) | 
						
							| 15 | 14 | adantrd |  |-  ( A = B -> ( ( A e. C /\ B e. D ) -> { A , B } ~<_ 2o ) ) | 
						
							| 16 |  | pr2ne |  |-  ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o <-> A =/= B ) ) | 
						
							| 17 | 16 | biimprd |  |-  ( ( A e. C /\ B e. D ) -> ( A =/= B -> { A , B } ~~ 2o ) ) | 
						
							| 18 |  | endom |  |-  ( { A , B } ~~ 2o -> { A , B } ~<_ 2o ) | 
						
							| 19 | 17 18 | syl6com |  |-  ( A =/= B -> ( ( A e. C /\ B e. D ) -> { A , B } ~<_ 2o ) ) | 
						
							| 20 | 15 19 | pm2.61ine |  |-  ( ( A e. C /\ B e. D ) -> { A , B } ~<_ 2o ) |