| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prds1.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prds1.i |  |-  ( ph -> I e. W ) | 
						
							| 3 |  | prds1.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prds1.r |  |-  ( ph -> R : I --> Ring ) | 
						
							| 5 |  | eqid |  |-  ( S Xs_ ( mulGrp o. R ) ) = ( S Xs_ ( mulGrp o. R ) ) | 
						
							| 6 |  | mgpf |  |-  ( mulGrp |` Ring ) : Ring --> Mnd | 
						
							| 7 |  | fco2 |  |-  ( ( ( mulGrp |` Ring ) : Ring --> Mnd /\ R : I --> Ring ) -> ( mulGrp o. R ) : I --> Mnd ) | 
						
							| 8 | 6 4 7 | sylancr |  |-  ( ph -> ( mulGrp o. R ) : I --> Mnd ) | 
						
							| 9 | 5 2 3 8 | prds0g |  |-  ( ph -> ( 0g o. ( mulGrp o. R ) ) = ( 0g ` ( S Xs_ ( mulGrp o. R ) ) ) ) | 
						
							| 10 |  | eqidd |  |-  ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) ) | 
						
							| 11 |  | eqid |  |-  ( mulGrp ` Y ) = ( mulGrp ` Y ) | 
						
							| 12 | 4 | ffnd |  |-  ( ph -> R Fn I ) | 
						
							| 13 | 1 11 5 2 3 12 | prdsmgp |  |-  ( ph -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( S Xs_ ( mulGrp o. R ) ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( S Xs_ ( mulGrp o. R ) ) ) ) ) | 
						
							| 14 | 13 | simpld |  |-  ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( S Xs_ ( mulGrp o. R ) ) ) ) | 
						
							| 15 | 13 | simprd |  |-  ( ph -> ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( S Xs_ ( mulGrp o. R ) ) ) ) | 
						
							| 16 | 15 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Y ) ) /\ y e. ( Base ` ( mulGrp ` Y ) ) ) ) -> ( x ( +g ` ( mulGrp ` Y ) ) y ) = ( x ( +g ` ( S Xs_ ( mulGrp o. R ) ) ) y ) ) | 
						
							| 17 | 10 14 16 | grpidpropd |  |-  ( ph -> ( 0g ` ( mulGrp ` Y ) ) = ( 0g ` ( S Xs_ ( mulGrp o. R ) ) ) ) | 
						
							| 18 | 9 17 | eqtr4d |  |-  ( ph -> ( 0g o. ( mulGrp o. R ) ) = ( 0g ` ( mulGrp ` Y ) ) ) | 
						
							| 19 |  | df-ur |  |-  1r = ( 0g o. mulGrp ) | 
						
							| 20 | 19 | coeq1i |  |-  ( 1r o. R ) = ( ( 0g o. mulGrp ) o. R ) | 
						
							| 21 |  | coass |  |-  ( ( 0g o. mulGrp ) o. R ) = ( 0g o. ( mulGrp o. R ) ) | 
						
							| 22 | 20 21 | eqtri |  |-  ( 1r o. R ) = ( 0g o. ( mulGrp o. R ) ) | 
						
							| 23 |  | eqid |  |-  ( 1r ` Y ) = ( 1r ` Y ) | 
						
							| 24 | 11 23 | ringidval |  |-  ( 1r ` Y ) = ( 0g ` ( mulGrp ` Y ) ) | 
						
							| 25 | 18 22 24 | 3eqtr4g |  |-  ( ph -> ( 1r o. R ) = ( 1r ` Y ) ) |