Description: The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) | |
| prdsbasmpt.b | |- B = ( Base ` Y ) | ||
| prdsbasmpt.s | |- ( ph -> S e. V ) | ||
| prdsbasmpt.i | |- ( ph -> I e. W ) | ||
| prdsbasmpt.r | |- ( ph -> R Fn I ) | ||
| Assertion | prdsbas2 | |- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) | |
| 2 | prdsbasmpt.b | |- B = ( Base ` Y ) | |
| 3 | prdsbasmpt.s | |- ( ph -> S e. V ) | |
| 4 | prdsbasmpt.i | |- ( ph -> I e. W ) | |
| 5 | prdsbasmpt.r | |- ( ph -> R Fn I ) | |
| 6 | fnex | |- ( ( R Fn I /\ I e. W ) -> R e. _V ) | |
| 7 | 5 4 6 | syl2anc | |- ( ph -> R e. _V ) | 
| 8 | 5 | fndmd | |- ( ph -> dom R = I ) | 
| 9 | 1 3 7 2 8 | prdsbas | |- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |