| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt2.y |  |-  Y = ( S Xs_ ( x e. I |-> R ) ) | 
						
							| 2 |  | prdsbasmpt2.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | prdsbasmpt2.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prdsbasmpt2.i |  |-  ( ph -> I e. W ) | 
						
							| 5 |  | prdsbasmpt2.r |  |-  ( ph -> A. x e. I R e. X ) | 
						
							| 6 |  | prdsbasmpt2.k |  |-  K = ( Base ` R ) | 
						
							| 7 |  | eqid |  |-  ( x e. I |-> R ) = ( x e. I |-> R ) | 
						
							| 8 | 7 | fnmpt |  |-  ( A. x e. I R e. X -> ( x e. I |-> R ) Fn I ) | 
						
							| 9 | 5 8 | syl |  |-  ( ph -> ( x e. I |-> R ) Fn I ) | 
						
							| 10 | 1 2 3 4 9 | prdsbas2 |  |-  ( ph -> B = X_ y e. I ( Base ` ( ( x e. I |-> R ) ` y ) ) ) | 
						
							| 11 |  | nfcv |  |-  F/_ x Base | 
						
							| 12 |  | nffvmpt1 |  |-  F/_ x ( ( x e. I |-> R ) ` y ) | 
						
							| 13 | 11 12 | nffv |  |-  F/_ x ( Base ` ( ( x e. I |-> R ) ` y ) ) | 
						
							| 14 |  | nfcv |  |-  F/_ y ( Base ` ( ( x e. I |-> R ) ` x ) ) | 
						
							| 15 |  | 2fveq3 |  |-  ( y = x -> ( Base ` ( ( x e. I |-> R ) ` y ) ) = ( Base ` ( ( x e. I |-> R ) ` x ) ) ) | 
						
							| 16 | 13 14 15 | cbvixp |  |-  X_ y e. I ( Base ` ( ( x e. I |-> R ) ` y ) ) = X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) | 
						
							| 17 | 10 16 | eqtrdi |  |-  ( ph -> B = X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) ) | 
						
							| 18 | 7 | fvmpt2 |  |-  ( ( x e. I /\ R e. X ) -> ( ( x e. I |-> R ) ` x ) = R ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( x e. I /\ R e. X ) -> ( Base ` ( ( x e. I |-> R ) ` x ) ) = ( Base ` R ) ) | 
						
							| 20 | 19 6 | eqtr4di |  |-  ( ( x e. I /\ R e. X ) -> ( Base ` ( ( x e. I |-> R ) ` x ) ) = K ) | 
						
							| 21 | 20 | ralimiaa |  |-  ( A. x e. I R e. X -> A. x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = K ) | 
						
							| 22 |  | ixpeq2 |  |-  ( A. x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = K -> X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = X_ x e. I K ) | 
						
							| 23 | 5 21 22 | 3syl |  |-  ( ph -> X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = X_ x e. I K ) | 
						
							| 24 | 17 23 | eqtrd |  |-  ( ph -> B = X_ x e. I K ) |