Description: Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prdsbasex.b | |- B = X_ x e. dom R ( Base ` ( R ` x ) ) | |
| Assertion | prdsbasex | |- B e. _V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prdsbasex.b | |- B = X_ x e. dom R ( Base ` ( R ` x ) ) | |
| 2 | ixpexg | |- ( A. x e. dom R ( Base ` ( R ` x ) ) e. _V -> X_ x e. dom R ( Base ` ( R ` x ) ) e. _V ) | |
| 3 | fvexd | |- ( x e. dom R -> ( Base ` ( R ` x ) ) e. _V ) | |
| 4 | 2 3 | mprg | |- X_ x e. dom R ( Base ` ( R ` x ) ) e. _V | 
| 5 | 1 4 | eqeltri | |- B e. _V |