Description: Points in the structure product are functions; use this with dffn5 to establish equalities. (Contributed by Stefan O'Rear, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
prdsbasmpt.b | |- B = ( Base ` Y ) |
||
prdsbasmpt.s | |- ( ph -> S e. V ) |
||
prdsbasmpt.i | |- ( ph -> I e. W ) |
||
prdsbasmpt.r | |- ( ph -> R Fn I ) |
||
prdsbasmpt.t | |- ( ph -> T e. B ) |
||
Assertion | prdsbasfn | |- ( ph -> T Fn I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
2 | prdsbasmpt.b | |- B = ( Base ` Y ) |
|
3 | prdsbasmpt.s | |- ( ph -> S e. V ) |
|
4 | prdsbasmpt.i | |- ( ph -> I e. W ) |
|
5 | prdsbasmpt.r | |- ( ph -> R Fn I ) |
|
6 | prdsbasmpt.t | |- ( ph -> T e. B ) |
|
7 | 1 2 3 4 5 | prdsbas2 | |- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
8 | 6 7 | eleqtrd | |- ( ph -> T e. X_ x e. I ( Base ` ( R ` x ) ) ) |
9 | ixpfn | |- ( T e. X_ x e. I ( Base ` ( R ` x ) ) -> T Fn I ) |
|
10 | 8 9 | syl | |- ( ph -> T Fn I ) |