Metamath Proof Explorer


Theorem prdsbasfn

Description: Points in the structure product are functions; use this with dffn5 to establish equalities. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y
|- Y = ( S Xs_ R )
prdsbasmpt.b
|- B = ( Base ` Y )
prdsbasmpt.s
|- ( ph -> S e. V )
prdsbasmpt.i
|- ( ph -> I e. W )
prdsbasmpt.r
|- ( ph -> R Fn I )
prdsbasmpt.t
|- ( ph -> T e. B )
Assertion prdsbasfn
|- ( ph -> T Fn I )

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y
 |-  Y = ( S Xs_ R )
2 prdsbasmpt.b
 |-  B = ( Base ` Y )
3 prdsbasmpt.s
 |-  ( ph -> S e. V )
4 prdsbasmpt.i
 |-  ( ph -> I e. W )
5 prdsbasmpt.r
 |-  ( ph -> R Fn I )
6 prdsbasmpt.t
 |-  ( ph -> T e. B )
7 1 2 3 4 5 prdsbas2
 |-  ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) )
8 6 7 eleqtrd
 |-  ( ph -> T e. X_ x e. I ( Base ` ( R ` x ) ) )
9 ixpfn
 |-  ( T e. X_ x e. I ( Base ` ( R ` x ) ) -> T Fn I )
10 8 9 syl
 |-  ( ph -> T Fn I )