Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbasmpt.y |
|- Y = ( S Xs_ R ) |
2 |
|
prdsbasmpt.b |
|- B = ( Base ` Y ) |
3 |
|
prdsbasmpt.s |
|- ( ph -> S e. V ) |
4 |
|
prdsbasmpt.i |
|- ( ph -> I e. W ) |
5 |
|
prdsbasmpt.r |
|- ( ph -> R Fn I ) |
6 |
1 2 3 4 5
|
prdsbas2 |
|- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
7 |
6
|
eleq2d |
|- ( ph -> ( ( x e. I |-> U ) e. B <-> ( x e. I |-> U ) e. X_ x e. I ( Base ` ( R ` x ) ) ) ) |
8 |
|
mptelixpg |
|- ( I e. W -> ( ( x e. I |-> U ) e. X_ x e. I ( Base ` ( R ` x ) ) <-> A. x e. I U e. ( Base ` ( R ` x ) ) ) ) |
9 |
4 8
|
syl |
|- ( ph -> ( ( x e. I |-> U ) e. X_ x e. I ( Base ` ( R ` x ) ) <-> A. x e. I U e. ( Base ` ( R ` x ) ) ) ) |
10 |
7 9
|
bitrd |
|- ( ph -> ( ( x e. I |-> U ) e. B <-> A. x e. I U e. ( Base ` ( R ` x ) ) ) ) |