Description: A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Mario Carneiro, 3-Jul-2015) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) | |
| prdsbasmpt2.b | |- B = ( Base ` Y ) | ||
| prdsbasmpt2.s | |- ( ph -> S e. V ) | ||
| prdsbasmpt2.i | |- ( ph -> I e. W ) | ||
| prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) | ||
| prdsbasmpt2.k | |- K = ( Base ` R ) | ||
| Assertion | prdsbasmpt2 | |- ( ph -> ( ( x e. I |-> U ) e. B <-> A. x e. I U e. K ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) | |
| 2 | prdsbasmpt2.b | |- B = ( Base ` Y ) | |
| 3 | prdsbasmpt2.s | |- ( ph -> S e. V ) | |
| 4 | prdsbasmpt2.i | |- ( ph -> I e. W ) | |
| 5 | prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) | |
| 6 | prdsbasmpt2.k | |- K = ( Base ` R ) | |
| 7 | 1 2 3 4 5 6 | prdsbas3 | |- ( ph -> B = X_ x e. I K ) | 
| 8 | 7 | eleq2d | |- ( ph -> ( ( x e. I |-> U ) e. B <-> ( x e. I |-> U ) e. X_ x e. I K ) ) | 
| 9 | mptelixpg | |- ( I e. W -> ( ( x e. I |-> U ) e. X_ x e. I K <-> A. x e. I U e. K ) ) | |
| 10 | 4 9 | syl | |- ( ph -> ( ( x e. I |-> U ) e. X_ x e. I K <-> A. x e. I U e. K ) ) | 
| 11 | 8 10 | bitrd | |- ( ph -> ( ( x e. I |-> U ) e. B <-> A. x e. I U e. K ) ) |