| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdsbasmpt.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | prdsbasmpt.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prdsbasmpt.i |  |-  ( ph -> I e. W ) | 
						
							| 5 |  | prdsbasmpt.r |  |-  ( ph -> R Fn I ) | 
						
							| 6 |  | prdsbasmpt.t |  |-  ( ph -> T e. B ) | 
						
							| 7 |  | prdsbasprj.j |  |-  ( ph -> J e. I ) | 
						
							| 8 |  | fveq2 |  |-  ( x = J -> ( T ` x ) = ( T ` J ) ) | 
						
							| 9 |  | 2fveq3 |  |-  ( x = J -> ( Base ` ( R ` x ) ) = ( Base ` ( R ` J ) ) ) | 
						
							| 10 | 8 9 | eleq12d |  |-  ( x = J -> ( ( T ` x ) e. ( Base ` ( R ` x ) ) <-> ( T ` J ) e. ( Base ` ( R ` J ) ) ) ) | 
						
							| 11 | 1 2 3 4 5 | prdsbas2 |  |-  ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) | 
						
							| 12 | 6 11 | eleqtrd |  |-  ( ph -> T e. X_ x e. I ( Base ` ( R ` x ) ) ) | 
						
							| 13 |  | elixp2 |  |-  ( T e. X_ x e. I ( Base ` ( R ` x ) ) <-> ( T e. _V /\ T Fn I /\ A. x e. I ( T ` x ) e. ( Base ` ( R ` x ) ) ) ) | 
						
							| 14 | 13 | simp3bi |  |-  ( T e. X_ x e. I ( Base ` ( R ` x ) ) -> A. x e. I ( T ` x ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 15 | 12 14 | syl |  |-  ( ph -> A. x e. I ( T ` x ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 16 | 10 15 7 | rspcdva |  |-  ( ph -> ( T ` J ) e. ( Base ` ( R ` J ) ) ) |