Description: A ball in the product metric for finite index set is the Cartesian product of balls in all coordinates. For infinite index set this is no longer true; instead the correct statement is that a *closed ball* is the product of closed balls in each coordinate (where closed ball means a set of the form in blcld ) - for a counterexample the point p in RR ^ NN whose n -th coordinate is 1 - 1 / n is in X_ n e. NN ball ( 0 , 1 ) but is not in the 1 -ball of the product (since d ( 0 , p ) = 1 ).
The last assumption, 0 < A , is needed only in the case I = (/) , when the right side evaluates to { (/) } and the left evaluates to (/) if A <_ 0 and { (/) } if 0 < A . (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbl.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) | |
| prdsbl.b | |- B = ( Base ` Y ) | ||
| prdsbl.v | |- V = ( Base ` R ) | ||
| prdsbl.e | |- E = ( ( dist ` R ) |` ( V X. V ) ) | ||
| prdsbl.d | |- D = ( dist ` Y ) | ||
| prdsbl.s | |- ( ph -> S e. W ) | ||
| prdsbl.i | |- ( ph -> I e. Fin ) | ||
| prdsbl.r | |- ( ( ph /\ x e. I ) -> R e. Z ) | ||
| prdsbl.m | |- ( ( ph /\ x e. I ) -> E e. ( *Met ` V ) ) | ||
| prdsbl.p | |- ( ph -> P e. B ) | ||
| prdsbl.a | |- ( ph -> A e. RR* ) | ||
| prdsbl.g | |- ( ph -> 0 < A ) | ||
| Assertion | prdsbl | |- ( ph -> ( P ( ball ` D ) A ) = X_ x e. I ( ( P ` x ) ( ball ` E ) A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prdsbl.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) | |
| 2 | prdsbl.b | |- B = ( Base ` Y ) | |
| 3 | prdsbl.v | |- V = ( Base ` R ) | |
| 4 | prdsbl.e | |- E = ( ( dist ` R ) |` ( V X. V ) ) | |
| 5 | prdsbl.d | |- D = ( dist ` Y ) | |
| 6 | prdsbl.s | |- ( ph -> S e. W ) | |
| 7 | prdsbl.i | |- ( ph -> I e. Fin ) | |
| 8 | prdsbl.r | |- ( ( ph /\ x e. I ) -> R e. Z ) | |
| 9 | prdsbl.m | |- ( ( ph /\ x e. I ) -> E e. ( *Met ` V ) ) | |
| 10 | prdsbl.p | |- ( ph -> P e. B ) | |
| 11 | prdsbl.a | |- ( ph -> A e. RR* ) | |
| 12 | prdsbl.g | |- ( ph -> 0 < A ) | |
| 13 | 8 | ralrimiva | |- ( ph -> A. x e. I R e. Z ) | 
| 14 | 1 2 6 7 13 3 | prdsbas3 | |- ( ph -> B = X_ x e. I V ) | 
| 15 | 14 | eleq2d | |- ( ph -> ( f e. B <-> f e. X_ x e. I V ) ) | 
| 16 | 15 | biimpa | |- ( ( ph /\ f e. B ) -> f e. X_ x e. I V ) | 
| 17 | ixpfn | |- ( f e. X_ x e. I V -> f Fn I ) | |
| 18 | vex | |- f e. _V | |
| 19 | 18 | elixp | |- ( f e. X_ x e. I ( ( P ` x ) ( ball ` E ) A ) <-> ( f Fn I /\ A. x e. I ( f ` x ) e. ( ( P ` x ) ( ball ` E ) A ) ) ) | 
| 20 | 19 | baib | |- ( f Fn I -> ( f e. X_ x e. I ( ( P ` x ) ( ball ` E ) A ) <-> A. x e. I ( f ` x ) e. ( ( P ` x ) ( ball ` E ) A ) ) ) | 
| 21 | 16 17 20 | 3syl | |- ( ( ph /\ f e. B ) -> ( f e. X_ x e. I ( ( P ` x ) ( ball ` E ) A ) <-> A. x e. I ( f ` x ) e. ( ( P ` x ) ( ball ` E ) A ) ) ) | 
| 22 | 9 | adantlr | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> E e. ( *Met ` V ) ) | 
| 23 | 11 | ad2antrr | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> A e. RR* ) | 
| 24 | 1 2 6 7 13 3 10 | prdsbascl | |- ( ph -> A. x e. I ( P ` x ) e. V ) | 
| 25 | 24 | adantr | |- ( ( ph /\ f e. B ) -> A. x e. I ( P ` x ) e. V ) | 
| 26 | 25 | r19.21bi | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( P ` x ) e. V ) | 
| 27 | 6 | adantr | |- ( ( ph /\ f e. B ) -> S e. W ) | 
| 28 | 7 | adantr | |- ( ( ph /\ f e. B ) -> I e. Fin ) | 
| 29 | 13 | adantr | |- ( ( ph /\ f e. B ) -> A. x e. I R e. Z ) | 
| 30 | simpr | |- ( ( ph /\ f e. B ) -> f e. B ) | |
| 31 | 1 2 27 28 29 3 30 | prdsbascl | |- ( ( ph /\ f e. B ) -> A. x e. I ( f ` x ) e. V ) | 
| 32 | 31 | r19.21bi | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( f ` x ) e. V ) | 
| 33 | elbl2 | |- ( ( ( E e. ( *Met ` V ) /\ A e. RR* ) /\ ( ( P ` x ) e. V /\ ( f ` x ) e. V ) ) -> ( ( f ` x ) e. ( ( P ` x ) ( ball ` E ) A ) <-> ( ( P ` x ) E ( f ` x ) ) < A ) ) | |
| 34 | 22 23 26 32 33 | syl22anc | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( ( f ` x ) e. ( ( P ` x ) ( ball ` E ) A ) <-> ( ( P ` x ) E ( f ` x ) ) < A ) ) | 
| 35 | 34 | ralbidva | |- ( ( ph /\ f e. B ) -> ( A. x e. I ( f ` x ) e. ( ( P ` x ) ( ball ` E ) A ) <-> A. x e. I ( ( P ` x ) E ( f ` x ) ) < A ) ) | 
| 36 | xmetcl | |- ( ( E e. ( *Met ` V ) /\ ( P ` x ) e. V /\ ( f ` x ) e. V ) -> ( ( P ` x ) E ( f ` x ) ) e. RR* ) | |
| 37 | 22 26 32 36 | syl3anc | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( ( P ` x ) E ( f ` x ) ) e. RR* ) | 
| 38 | 37 | ralrimiva | |- ( ( ph /\ f e. B ) -> A. x e. I ( ( P ` x ) E ( f ` x ) ) e. RR* ) | 
| 39 | eqid | |- ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) = ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) | |
| 40 | breq1 | |- ( z = ( ( P ` x ) E ( f ` x ) ) -> ( z < A <-> ( ( P ` x ) E ( f ` x ) ) < A ) ) | |
| 41 | 39 40 | ralrnmptw | |- ( A. x e. I ( ( P ` x ) E ( f ` x ) ) e. RR* -> ( A. z e. ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) z < A <-> A. x e. I ( ( P ` x ) E ( f ` x ) ) < A ) ) | 
| 42 | 38 41 | syl | |- ( ( ph /\ f e. B ) -> ( A. z e. ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) z < A <-> A. x e. I ( ( P ` x ) E ( f ` x ) ) < A ) ) | 
| 43 | 12 | adantr | |- ( ( ph /\ f e. B ) -> 0 < A ) | 
| 44 | c0ex | |- 0 e. _V | |
| 45 | breq1 | |- ( z = 0 -> ( z < A <-> 0 < A ) ) | |
| 46 | 44 45 | ralsn |  |-  ( A. z e. { 0 } z < A <-> 0 < A ) | 
| 47 | 43 46 | sylibr |  |-  ( ( ph /\ f e. B ) -> A. z e. { 0 } z < A ) | 
| 48 | ralunb |  |-  ( A. z e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) z < A <-> ( A. z e. ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) z < A /\ A. z e. { 0 } z < A ) ) | |
| 49 | 10 | adantr | |- ( ( ph /\ f e. B ) -> P e. B ) | 
| 50 | 1 2 27 28 29 49 30 3 4 5 | prdsdsval3 |  |-  ( ( ph /\ f e. B ) -> ( P D f ) = sup ( ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) , RR* , < ) ) | 
| 51 | xrltso | |- < Or RR* | |
| 52 | 51 | a1i | |- ( ( ph /\ f e. B ) -> < Or RR* ) | 
| 53 | 39 | rnmpt |  |-  ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) = { y | E. x e. I y = ( ( P ` x ) E ( f ` x ) ) } | 
| 54 | abrexfi |  |-  ( I e. Fin -> { y | E. x e. I y = ( ( P ` x ) E ( f ` x ) ) } e. Fin ) | |
| 55 | 53 54 | eqeltrid | |- ( I e. Fin -> ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) e. Fin ) | 
| 56 | 28 55 | syl | |- ( ( ph /\ f e. B ) -> ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) e. Fin ) | 
| 57 | snfi |  |-  { 0 } e. Fin | |
| 58 | unfi |  |-  ( ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) e. Fin /\ { 0 } e. Fin ) -> ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) e. Fin ) | |
| 59 | 56 57 58 | sylancl |  |-  ( ( ph /\ f e. B ) -> ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) e. Fin ) | 
| 60 | ssun2 |  |-  { 0 } C_ ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) | |
| 61 | 44 | snss |  |-  ( 0 e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) <-> { 0 } C_ ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) ) | 
| 62 | 60 61 | mpbir |  |-  0 e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) | 
| 63 | ne0i |  |-  ( 0 e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) -> ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) =/= (/) ) | |
| 64 | 62 63 | mp1i |  |-  ( ( ph /\ f e. B ) -> ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) =/= (/) ) | 
| 65 | 37 | fmpttd | |- ( ( ph /\ f e. B ) -> ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) : I --> RR* ) | 
| 66 | 65 | frnd | |- ( ( ph /\ f e. B ) -> ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) C_ RR* ) | 
| 67 | 0xr | |- 0 e. RR* | |
| 68 | 67 | a1i | |- ( ( ph /\ f e. B ) -> 0 e. RR* ) | 
| 69 | 68 | snssd |  |-  ( ( ph /\ f e. B ) -> { 0 } C_ RR* ) | 
| 70 | 66 69 | unssd |  |-  ( ( ph /\ f e. B ) -> ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) C_ RR* ) | 
| 71 | fisupcl |  |-  ( ( < Or RR* /\ ( ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) e. Fin /\ ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) =/= (/) /\ ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) C_ RR* ) ) -> sup ( ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) , RR* , < ) e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) ) | |
| 72 | 52 59 64 70 71 | syl13anc |  |-  ( ( ph /\ f e. B ) -> sup ( ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) , RR* , < ) e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) ) | 
| 73 | 50 72 | eqeltrd |  |-  ( ( ph /\ f e. B ) -> ( P D f ) e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) ) | 
| 74 | breq1 | |- ( z = ( P D f ) -> ( z < A <-> ( P D f ) < A ) ) | |
| 75 | 74 | rspcv |  |-  ( ( P D f ) e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) -> ( A. z e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) z < A -> ( P D f ) < A ) ) | 
| 76 | 73 75 | syl |  |-  ( ( ph /\ f e. B ) -> ( A. z e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) z < A -> ( P D f ) < A ) ) | 
| 77 | 48 76 | biimtrrid |  |-  ( ( ph /\ f e. B ) -> ( ( A. z e. ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) z < A /\ A. z e. { 0 } z < A ) -> ( P D f ) < A ) ) | 
| 78 | 47 77 | mpan2d | |- ( ( ph /\ f e. B ) -> ( A. z e. ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) z < A -> ( P D f ) < A ) ) | 
| 79 | 42 78 | sylbird | |- ( ( ph /\ f e. B ) -> ( A. x e. I ( ( P ` x ) E ( f ` x ) ) < A -> ( P D f ) < A ) ) | 
| 80 | ssun1 |  |-  ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) C_ ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) | |
| 81 | ovex | |- ( ( P ` x ) E ( f ` x ) ) e. _V | |
| 82 | 81 | elabrex |  |-  ( x e. I -> ( ( P ` x ) E ( f ` x ) ) e. { y | E. x e. I y = ( ( P ` x ) E ( f ` x ) ) } ) | 
| 83 | 82 | adantl |  |-  ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( ( P ` x ) E ( f ` x ) ) e. { y | E. x e. I y = ( ( P ` x ) E ( f ` x ) ) } ) | 
| 84 | 83 53 | eleqtrrdi | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( ( P ` x ) E ( f ` x ) ) e. ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) ) | 
| 85 | 80 84 | sselid |  |-  ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( ( P ` x ) E ( f ` x ) ) e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) ) | 
| 86 | supxrub |  |-  ( ( ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) C_ RR* /\ ( ( P ` x ) E ( f ` x ) ) e. ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) ) -> ( ( P ` x ) E ( f ` x ) ) <_ sup ( ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) , RR* , < ) ) | |
| 87 | 70 85 86 | syl2an2r |  |-  ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( ( P ` x ) E ( f ` x ) ) <_ sup ( ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) , RR* , < ) ) | 
| 88 | 50 | adantr |  |-  ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( P D f ) = sup ( ( ran ( x e. I |-> ( ( P ` x ) E ( f ` x ) ) ) u. { 0 } ) , RR* , < ) ) | 
| 89 | 87 88 | breqtrrd | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( ( P ` x ) E ( f ` x ) ) <_ ( P D f ) ) | 
| 90 | 1 2 3 4 5 6 7 8 9 | prdsxmet | |- ( ph -> D e. ( *Met ` B ) ) | 
| 91 | 90 | ad2antrr | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> D e. ( *Met ` B ) ) | 
| 92 | 10 | ad2antrr | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> P e. B ) | 
| 93 | 30 | adantr | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> f e. B ) | 
| 94 | xmetcl | |- ( ( D e. ( *Met ` B ) /\ P e. B /\ f e. B ) -> ( P D f ) e. RR* ) | |
| 95 | 91 92 93 94 | syl3anc | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( P D f ) e. RR* ) | 
| 96 | xrlelttr | |- ( ( ( ( P ` x ) E ( f ` x ) ) e. RR* /\ ( P D f ) e. RR* /\ A e. RR* ) -> ( ( ( ( P ` x ) E ( f ` x ) ) <_ ( P D f ) /\ ( P D f ) < A ) -> ( ( P ` x ) E ( f ` x ) ) < A ) ) | |
| 97 | 37 95 23 96 | syl3anc | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( ( ( ( P ` x ) E ( f ` x ) ) <_ ( P D f ) /\ ( P D f ) < A ) -> ( ( P ` x ) E ( f ` x ) ) < A ) ) | 
| 98 | 89 97 | mpand | |- ( ( ( ph /\ f e. B ) /\ x e. I ) -> ( ( P D f ) < A -> ( ( P ` x ) E ( f ` x ) ) < A ) ) | 
| 99 | 98 | ralrimdva | |- ( ( ph /\ f e. B ) -> ( ( P D f ) < A -> A. x e. I ( ( P ` x ) E ( f ` x ) ) < A ) ) | 
| 100 | 79 99 | impbid | |- ( ( ph /\ f e. B ) -> ( A. x e. I ( ( P ` x ) E ( f ` x ) ) < A <-> ( P D f ) < A ) ) | 
| 101 | 21 35 100 | 3bitrrd | |- ( ( ph /\ f e. B ) -> ( ( P D f ) < A <-> f e. X_ x e. I ( ( P ` x ) ( ball ` E ) A ) ) ) | 
| 102 | 101 | pm5.32da | |- ( ph -> ( ( f e. B /\ ( P D f ) < A ) <-> ( f e. B /\ f e. X_ x e. I ( ( P ` x ) ( ball ` E ) A ) ) ) ) | 
| 103 | elbl | |- ( ( D e. ( *Met ` B ) /\ P e. B /\ A e. RR* ) -> ( f e. ( P ( ball ` D ) A ) <-> ( f e. B /\ ( P D f ) < A ) ) ) | |
| 104 | 90 10 11 103 | syl3anc | |- ( ph -> ( f e. ( P ( ball ` D ) A ) <-> ( f e. B /\ ( P D f ) < A ) ) ) | 
| 105 | 24 | r19.21bi | |- ( ( ph /\ x e. I ) -> ( P ` x ) e. V ) | 
| 106 | 11 | adantr | |- ( ( ph /\ x e. I ) -> A e. RR* ) | 
| 107 | blssm | |- ( ( E e. ( *Met ` V ) /\ ( P ` x ) e. V /\ A e. RR* ) -> ( ( P ` x ) ( ball ` E ) A ) C_ V ) | |
| 108 | 9 105 106 107 | syl3anc | |- ( ( ph /\ x e. I ) -> ( ( P ` x ) ( ball ` E ) A ) C_ V ) | 
| 109 | 108 | ralrimiva | |- ( ph -> A. x e. I ( ( P ` x ) ( ball ` E ) A ) C_ V ) | 
| 110 | ss2ixp | |- ( A. x e. I ( ( P ` x ) ( ball ` E ) A ) C_ V -> X_ x e. I ( ( P ` x ) ( ball ` E ) A ) C_ X_ x e. I V ) | |
| 111 | 109 110 | syl | |- ( ph -> X_ x e. I ( ( P ` x ) ( ball ` E ) A ) C_ X_ x e. I V ) | 
| 112 | 111 14 | sseqtrrd | |- ( ph -> X_ x e. I ( ( P ` x ) ( ball ` E ) A ) C_ B ) | 
| 113 | 112 | sseld | |- ( ph -> ( f e. X_ x e. I ( ( P ` x ) ( ball ` E ) A ) -> f e. B ) ) | 
| 114 | 113 | pm4.71rd | |- ( ph -> ( f e. X_ x e. I ( ( P ` x ) ( ball ` E ) A ) <-> ( f e. B /\ f e. X_ x e. I ( ( P ` x ) ( ball ` E ) A ) ) ) ) | 
| 115 | 102 104 114 | 3bitr4d | |- ( ph -> ( f e. ( P ( ball ` D ) A ) <-> f e. X_ x e. I ( ( P ` x ) ( ball ` E ) A ) ) ) | 
| 116 | 115 | eqrdv | |- ( ph -> ( P ( ball ` D ) A ) = X_ x e. I ( ( P ` x ) ( ball ` E ) A ) ) |