Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbnd.y |
|- Y = ( S Xs_ R ) |
2 |
|
prdsbnd.b |
|- B = ( Base ` Y ) |
3 |
|
prdsbnd.v |
|- V = ( Base ` ( R ` x ) ) |
4 |
|
prdsbnd.e |
|- E = ( ( dist ` ( R ` x ) ) |` ( V X. V ) ) |
5 |
|
prdsbnd.d |
|- D = ( dist ` Y ) |
6 |
|
prdsbnd.s |
|- ( ph -> S e. W ) |
7 |
|
prdsbnd.i |
|- ( ph -> I e. Fin ) |
8 |
|
prdsbnd.r |
|- ( ph -> R Fn I ) |
9 |
|
prdsbnd.m |
|- ( ( ph /\ x e. I ) -> E e. ( Bnd ` V ) ) |
10 |
|
eqid |
|- ( S Xs_ ( x e. I |-> ( R ` x ) ) ) = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) |
11 |
|
eqid |
|- ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
12 |
|
eqid |
|- ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) = ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
13 |
|
fvexd |
|- ( ( ph /\ x e. I ) -> ( R ` x ) e. _V ) |
14 |
|
bndmet |
|- ( E e. ( Bnd ` V ) -> E e. ( Met ` V ) ) |
15 |
9 14
|
syl |
|- ( ( ph /\ x e. I ) -> E e. ( Met ` V ) ) |
16 |
10 11 3 4 12 6 7 13 15
|
prdsmet |
|- ( ph -> ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) e. ( Met ` ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) ) |
17 |
|
dffn5 |
|- ( R Fn I <-> R = ( x e. I |-> ( R ` x ) ) ) |
18 |
8 17
|
sylib |
|- ( ph -> R = ( x e. I |-> ( R ` x ) ) ) |
19 |
18
|
oveq2d |
|- ( ph -> ( S Xs_ R ) = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
20 |
1 19
|
eqtrid |
|- ( ph -> Y = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
21 |
20
|
fveq2d |
|- ( ph -> ( dist ` Y ) = ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
22 |
5 21
|
eqtrid |
|- ( ph -> D = ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
23 |
20
|
fveq2d |
|- ( ph -> ( Base ` Y ) = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
24 |
2 23
|
eqtrid |
|- ( ph -> B = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
25 |
24
|
fveq2d |
|- ( ph -> ( Met ` B ) = ( Met ` ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) ) |
26 |
16 22 25
|
3eltr4d |
|- ( ph -> D e. ( Met ` B ) ) |
27 |
|
isbnd3 |
|- ( E e. ( Bnd ` V ) <-> ( E e. ( Met ` V ) /\ E. w e. RR E : ( V X. V ) --> ( 0 [,] w ) ) ) |
28 |
27
|
simprbi |
|- ( E e. ( Bnd ` V ) -> E. w e. RR E : ( V X. V ) --> ( 0 [,] w ) ) |
29 |
9 28
|
syl |
|- ( ( ph /\ x e. I ) -> E. w e. RR E : ( V X. V ) --> ( 0 [,] w ) ) |
30 |
29
|
ralrimiva |
|- ( ph -> A. x e. I E. w e. RR E : ( V X. V ) --> ( 0 [,] w ) ) |
31 |
|
oveq2 |
|- ( w = ( k ` x ) -> ( 0 [,] w ) = ( 0 [,] ( k ` x ) ) ) |
32 |
31
|
feq3d |
|- ( w = ( k ` x ) -> ( E : ( V X. V ) --> ( 0 [,] w ) <-> E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) |
33 |
32
|
ac6sfi |
|- ( ( I e. Fin /\ A. x e. I E. w e. RR E : ( V X. V ) --> ( 0 [,] w ) ) -> E. k ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) |
34 |
7 30 33
|
syl2anc |
|- ( ph -> E. k ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) |
35 |
|
frn |
|- ( k : I --> RR -> ran k C_ RR ) |
36 |
35
|
adantl |
|- ( ( ph /\ k : I --> RR ) -> ran k C_ RR ) |
37 |
|
0red |
|- ( ph -> 0 e. RR ) |
38 |
37
|
snssd |
|- ( ph -> { 0 } C_ RR ) |
39 |
38
|
adantr |
|- ( ( ph /\ k : I --> RR ) -> { 0 } C_ RR ) |
40 |
36 39
|
unssd |
|- ( ( ph /\ k : I --> RR ) -> ( ran k u. { 0 } ) C_ RR ) |
41 |
|
ffn |
|- ( k : I --> RR -> k Fn I ) |
42 |
|
dffn4 |
|- ( k Fn I <-> k : I -onto-> ran k ) |
43 |
41 42
|
sylib |
|- ( k : I --> RR -> k : I -onto-> ran k ) |
44 |
|
fofi |
|- ( ( I e. Fin /\ k : I -onto-> ran k ) -> ran k e. Fin ) |
45 |
7 43 44
|
syl2an |
|- ( ( ph /\ k : I --> RR ) -> ran k e. Fin ) |
46 |
|
snfi |
|- { 0 } e. Fin |
47 |
|
unfi |
|- ( ( ran k e. Fin /\ { 0 } e. Fin ) -> ( ran k u. { 0 } ) e. Fin ) |
48 |
45 46 47
|
sylancl |
|- ( ( ph /\ k : I --> RR ) -> ( ran k u. { 0 } ) e. Fin ) |
49 |
|
ssun2 |
|- { 0 } C_ ( ran k u. { 0 } ) |
50 |
|
c0ex |
|- 0 e. _V |
51 |
50
|
snid |
|- 0 e. { 0 } |
52 |
49 51
|
sselii |
|- 0 e. ( ran k u. { 0 } ) |
53 |
|
ne0i |
|- ( 0 e. ( ran k u. { 0 } ) -> ( ran k u. { 0 } ) =/= (/) ) |
54 |
52 53
|
mp1i |
|- ( ( ph /\ k : I --> RR ) -> ( ran k u. { 0 } ) =/= (/) ) |
55 |
|
ltso |
|- < Or RR |
56 |
|
fisupcl |
|- ( ( < Or RR /\ ( ( ran k u. { 0 } ) e. Fin /\ ( ran k u. { 0 } ) =/= (/) /\ ( ran k u. { 0 } ) C_ RR ) ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. ( ran k u. { 0 } ) ) |
57 |
55 56
|
mpan |
|- ( ( ( ran k u. { 0 } ) e. Fin /\ ( ran k u. { 0 } ) =/= (/) /\ ( ran k u. { 0 } ) C_ RR ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. ( ran k u. { 0 } ) ) |
58 |
48 54 40 57
|
syl3anc |
|- ( ( ph /\ k : I --> RR ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. ( ran k u. { 0 } ) ) |
59 |
40 58
|
sseldd |
|- ( ( ph /\ k : I --> RR ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) |
60 |
59
|
adantrr |
|- ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) |
61 |
|
metf |
|- ( D e. ( Met ` B ) -> D : ( B X. B ) --> RR ) |
62 |
|
ffn |
|- ( D : ( B X. B ) --> RR -> D Fn ( B X. B ) ) |
63 |
26 61 62
|
3syl |
|- ( ph -> D Fn ( B X. B ) ) |
64 |
63
|
adantr |
|- ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> D Fn ( B X. B ) ) |
65 |
26
|
ad2antrr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> D e. ( Met ` B ) ) |
66 |
|
simprl |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> f e. B ) |
67 |
66
|
adantr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> f e. B ) |
68 |
|
simprr |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> g e. B ) |
69 |
68
|
adantr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> g e. B ) |
70 |
|
metcl |
|- ( ( D e. ( Met ` B ) /\ f e. B /\ g e. B ) -> ( f D g ) e. RR ) |
71 |
65 67 69 70
|
syl3anc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( f D g ) e. RR ) |
72 |
|
metge0 |
|- ( ( D e. ( Met ` B ) /\ f e. B /\ g e. B ) -> 0 <_ ( f D g ) ) |
73 |
65 67 69 72
|
syl3anc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> 0 <_ ( f D g ) ) |
74 |
22
|
oveqdr |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f D g ) = ( f ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) g ) ) |
75 |
6
|
adantr |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> S e. W ) |
76 |
7
|
adantr |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> I e. Fin ) |
77 |
|
fvexd |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( R ` x ) e. _V ) |
78 |
77
|
ralrimiva |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> A. x e. I ( R ` x ) e. _V ) |
79 |
24
|
adantr |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> B = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
80 |
66 79
|
eleqtrd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> f e. ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
81 |
68 79
|
eleqtrd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> g e. ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
82 |
10 11 75 76 78 80 81 3 4 12
|
prdsdsval3 |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) g ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
83 |
74 82
|
eqtrd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f D g ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
84 |
83
|
adantr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( f D g ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
85 |
15
|
adantlr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> E e. ( Met ` V ) ) |
86 |
10 11 75 76 78 3 80
|
prdsbascl |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> A. x e. I ( f ` x ) e. V ) |
87 |
86
|
r19.21bi |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( f ` x ) e. V ) |
88 |
10 11 75 76 78 3 81
|
prdsbascl |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> A. x e. I ( g ` x ) e. V ) |
89 |
88
|
r19.21bi |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( g ` x ) e. V ) |
90 |
|
metcl |
|- ( ( E e. ( Met ` V ) /\ ( f ` x ) e. V /\ ( g ` x ) e. V ) -> ( ( f ` x ) E ( g ` x ) ) e. RR ) |
91 |
85 87 89 90
|
syl3anc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( ( f ` x ) E ( g ` x ) ) e. RR ) |
92 |
91
|
ad2ant2r |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( f ` x ) E ( g ` x ) ) e. RR ) |
93 |
|
ffvelrn |
|- ( ( k : I --> RR /\ x e. I ) -> ( k ` x ) e. RR ) |
94 |
93
|
ad2ant2lr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( k ` x ) e. RR ) |
95 |
59
|
adantlr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) |
96 |
95
|
adantr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) |
97 |
|
simprr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) |
98 |
87
|
ad2ant2r |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( f ` x ) e. V ) |
99 |
89
|
ad2ant2r |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( g ` x ) e. V ) |
100 |
97 98 99
|
fovrnd |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( f ` x ) E ( g ` x ) ) e. ( 0 [,] ( k ` x ) ) ) |
101 |
|
0re |
|- 0 e. RR |
102 |
|
elicc2 |
|- ( ( 0 e. RR /\ ( k ` x ) e. RR ) -> ( ( ( f ` x ) E ( g ` x ) ) e. ( 0 [,] ( k ` x ) ) <-> ( ( ( f ` x ) E ( g ` x ) ) e. RR /\ 0 <_ ( ( f ` x ) E ( g ` x ) ) /\ ( ( f ` x ) E ( g ` x ) ) <_ ( k ` x ) ) ) ) |
103 |
101 94 102
|
sylancr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( ( f ` x ) E ( g ` x ) ) e. ( 0 [,] ( k ` x ) ) <-> ( ( ( f ` x ) E ( g ` x ) ) e. RR /\ 0 <_ ( ( f ` x ) E ( g ` x ) ) /\ ( ( f ` x ) E ( g ` x ) ) <_ ( k ` x ) ) ) ) |
104 |
100 103
|
mpbid |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( ( f ` x ) E ( g ` x ) ) e. RR /\ 0 <_ ( ( f ` x ) E ( g ` x ) ) /\ ( ( f ` x ) E ( g ` x ) ) <_ ( k ` x ) ) ) |
105 |
104
|
simp3d |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( f ` x ) E ( g ` x ) ) <_ ( k ` x ) ) |
106 |
40
|
adantlr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) -> ( ran k u. { 0 } ) C_ RR ) |
107 |
106
|
adantr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ran k u. { 0 } ) C_ RR ) |
108 |
52 53
|
mp1i |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ran k u. { 0 } ) =/= (/) ) |
109 |
|
fimaxre2 |
|- ( ( ( ran k u. { 0 } ) C_ RR /\ ( ran k u. { 0 } ) e. Fin ) -> E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) |
110 |
40 48 109
|
syl2anc |
|- ( ( ph /\ k : I --> RR ) -> E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) |
111 |
110
|
adantlr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) -> E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) |
112 |
111
|
adantr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) |
113 |
|
ssun1 |
|- ran k C_ ( ran k u. { 0 } ) |
114 |
41
|
ad2antlr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> k Fn I ) |
115 |
|
simprl |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> x e. I ) |
116 |
|
fnfvelrn |
|- ( ( k Fn I /\ x e. I ) -> ( k ` x ) e. ran k ) |
117 |
114 115 116
|
syl2anc |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( k ` x ) e. ran k ) |
118 |
113 117
|
sselid |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( k ` x ) e. ( ran k u. { 0 } ) ) |
119 |
|
suprub |
|- ( ( ( ( ran k u. { 0 } ) C_ RR /\ ( ran k u. { 0 } ) =/= (/) /\ E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) /\ ( k ` x ) e. ( ran k u. { 0 } ) ) -> ( k ` x ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
120 |
107 108 112 118 119
|
syl31anc |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( k ` x ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
121 |
92 94 96 105 120
|
letrd |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
122 |
121
|
expr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ x e. I ) -> ( E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) -> ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
123 |
122
|
ralimdva |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) -> ( A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) -> A. x e. I ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
124 |
123
|
impr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> A. x e. I ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
125 |
|
ovex |
|- ( ( f ` x ) E ( g ` x ) ) e. _V |
126 |
125
|
rgenw |
|- A. x e. I ( ( f ` x ) E ( g ` x ) ) e. _V |
127 |
|
eqid |
|- ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) |
128 |
|
breq1 |
|- ( w = ( ( f ` x ) E ( g ` x ) ) -> ( w <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
129 |
127 128
|
ralrnmptw |
|- ( A. x e. I ( ( f ` x ) E ( g ` x ) ) e. _V -> ( A. w e. ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> A. x e. I ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
130 |
126 129
|
ax-mp |
|- ( A. w e. ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> A. x e. I ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
131 |
124 130
|
sylibr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> A. w e. ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
132 |
40
|
ad2ant2r |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ran k u. { 0 } ) C_ RR ) |
133 |
52 53
|
mp1i |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ran k u. { 0 } ) =/= (/) ) |
134 |
110
|
ad2ant2r |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) |
135 |
52
|
a1i |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> 0 e. ( ran k u. { 0 } ) ) |
136 |
|
suprub |
|- ( ( ( ( ran k u. { 0 } ) C_ RR /\ ( ran k u. { 0 } ) =/= (/) /\ E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) /\ 0 e. ( ran k u. { 0 } ) ) -> 0 <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
137 |
132 133 134 135 136
|
syl31anc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> 0 <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
138 |
|
elsni |
|- ( w e. { 0 } -> w = 0 ) |
139 |
138
|
breq1d |
|- ( w e. { 0 } -> ( w <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> 0 <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
140 |
137 139
|
syl5ibrcom |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( w e. { 0 } -> w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
141 |
140
|
ralrimiv |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> A. w e. { 0 } w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
142 |
|
ralunb |
|- ( A. w e. ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> ( A. w e. ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) /\ A. w e. { 0 } w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
143 |
131 141 142
|
sylanbrc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> A. w e. ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
144 |
91
|
fmpttd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) : I --> RR ) |
145 |
144
|
frnd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) C_ RR ) |
146 |
|
0red |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> 0 e. RR ) |
147 |
146
|
snssd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> { 0 } C_ RR ) |
148 |
145 147
|
unssd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) C_ RR ) |
149 |
|
ressxr |
|- RR C_ RR* |
150 |
148 149
|
sstrdi |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) C_ RR* ) |
151 |
150
|
adantr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) C_ RR* ) |
152 |
60
|
adantlr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) |
153 |
152
|
rexrd |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR* ) |
154 |
|
supxrleub |
|- ( ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) C_ RR* /\ sup ( ( ran k u. { 0 } ) , RR , < ) e. RR* ) -> ( sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> A. w e. ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
155 |
151 153 154
|
syl2anc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> A. w e. ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
156 |
143 155
|
mpbird |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
157 |
84 156
|
eqbrtrd |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( f D g ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
158 |
|
elicc2 |
|- ( ( 0 e. RR /\ sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) -> ( ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) <-> ( ( f D g ) e. RR /\ 0 <_ ( f D g ) /\ ( f D g ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) ) |
159 |
101 152 158
|
sylancr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) <-> ( ( f D g ) e. RR /\ 0 <_ ( f D g ) /\ ( f D g ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) ) |
160 |
71 73 157 159
|
mpbir3and |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
161 |
160
|
an32s |
|- ( ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) /\ ( f e. B /\ g e. B ) ) -> ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
162 |
161
|
ralrimivva |
|- ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> A. f e. B A. g e. B ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
163 |
|
ffnov |
|- ( D : ( B X. B ) --> ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) <-> ( D Fn ( B X. B ) /\ A. f e. B A. g e. B ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) ) |
164 |
64 162 163
|
sylanbrc |
|- ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> D : ( B X. B ) --> ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
165 |
|
oveq2 |
|- ( m = sup ( ( ran k u. { 0 } ) , RR , < ) -> ( 0 [,] m ) = ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
166 |
165
|
feq3d |
|- ( m = sup ( ( ran k u. { 0 } ) , RR , < ) -> ( D : ( B X. B ) --> ( 0 [,] m ) <-> D : ( B X. B ) --> ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) ) |
167 |
166
|
rspcev |
|- ( ( sup ( ( ran k u. { 0 } ) , RR , < ) e. RR /\ D : ( B X. B ) --> ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) -> E. m e. RR D : ( B X. B ) --> ( 0 [,] m ) ) |
168 |
60 164 167
|
syl2anc |
|- ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> E. m e. RR D : ( B X. B ) --> ( 0 [,] m ) ) |
169 |
34 168
|
exlimddv |
|- ( ph -> E. m e. RR D : ( B X. B ) --> ( 0 [,] m ) ) |
170 |
|
isbnd3 |
|- ( D e. ( Bnd ` B ) <-> ( D e. ( Met ` B ) /\ E. m e. RR D : ( B X. B ) --> ( 0 [,] m ) ) ) |
171 |
26 169 170
|
sylanbrc |
|- ( ph -> D e. ( Bnd ` B ) ) |