| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsbnd.y |
|- Y = ( S Xs_ R ) |
| 2 |
|
prdsbnd.b |
|- B = ( Base ` Y ) |
| 3 |
|
prdsbnd.v |
|- V = ( Base ` ( R ` x ) ) |
| 4 |
|
prdsbnd.e |
|- E = ( ( dist ` ( R ` x ) ) |` ( V X. V ) ) |
| 5 |
|
prdsbnd.d |
|- D = ( dist ` Y ) |
| 6 |
|
prdsbnd.s |
|- ( ph -> S e. W ) |
| 7 |
|
prdsbnd.i |
|- ( ph -> I e. Fin ) |
| 8 |
|
prdsbnd.r |
|- ( ph -> R Fn I ) |
| 9 |
|
prdsbnd.m |
|- ( ( ph /\ x e. I ) -> E e. ( Bnd ` V ) ) |
| 10 |
|
eqid |
|- ( S Xs_ ( x e. I |-> ( R ` x ) ) ) = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) |
| 11 |
|
eqid |
|- ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
| 12 |
|
eqid |
|- ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) = ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
| 13 |
|
fvexd |
|- ( ( ph /\ x e. I ) -> ( R ` x ) e. _V ) |
| 14 |
|
bndmet |
|- ( E e. ( Bnd ` V ) -> E e. ( Met ` V ) ) |
| 15 |
9 14
|
syl |
|- ( ( ph /\ x e. I ) -> E e. ( Met ` V ) ) |
| 16 |
10 11 3 4 12 6 7 13 15
|
prdsmet |
|- ( ph -> ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) e. ( Met ` ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) ) |
| 17 |
|
dffn5 |
|- ( R Fn I <-> R = ( x e. I |-> ( R ` x ) ) ) |
| 18 |
8 17
|
sylib |
|- ( ph -> R = ( x e. I |-> ( R ` x ) ) ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( S Xs_ R ) = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
| 20 |
1 19
|
eqtrid |
|- ( ph -> Y = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
| 21 |
20
|
fveq2d |
|- ( ph -> ( dist ` Y ) = ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
| 22 |
5 21
|
eqtrid |
|- ( ph -> D = ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
| 23 |
20
|
fveq2d |
|- ( ph -> ( Base ` Y ) = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
| 24 |
2 23
|
eqtrid |
|- ( ph -> B = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
| 25 |
24
|
fveq2d |
|- ( ph -> ( Met ` B ) = ( Met ` ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) ) |
| 26 |
16 22 25
|
3eltr4d |
|- ( ph -> D e. ( Met ` B ) ) |
| 27 |
|
isbnd3 |
|- ( E e. ( Bnd ` V ) <-> ( E e. ( Met ` V ) /\ E. w e. RR E : ( V X. V ) --> ( 0 [,] w ) ) ) |
| 28 |
27
|
simprbi |
|- ( E e. ( Bnd ` V ) -> E. w e. RR E : ( V X. V ) --> ( 0 [,] w ) ) |
| 29 |
9 28
|
syl |
|- ( ( ph /\ x e. I ) -> E. w e. RR E : ( V X. V ) --> ( 0 [,] w ) ) |
| 30 |
29
|
ralrimiva |
|- ( ph -> A. x e. I E. w e. RR E : ( V X. V ) --> ( 0 [,] w ) ) |
| 31 |
|
oveq2 |
|- ( w = ( k ` x ) -> ( 0 [,] w ) = ( 0 [,] ( k ` x ) ) ) |
| 32 |
31
|
feq3d |
|- ( w = ( k ` x ) -> ( E : ( V X. V ) --> ( 0 [,] w ) <-> E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) |
| 33 |
32
|
ac6sfi |
|- ( ( I e. Fin /\ A. x e. I E. w e. RR E : ( V X. V ) --> ( 0 [,] w ) ) -> E. k ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) |
| 34 |
7 30 33
|
syl2anc |
|- ( ph -> E. k ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) |
| 35 |
|
frn |
|- ( k : I --> RR -> ran k C_ RR ) |
| 36 |
35
|
adantl |
|- ( ( ph /\ k : I --> RR ) -> ran k C_ RR ) |
| 37 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 38 |
37
|
snssd |
|- ( ph -> { 0 } C_ RR ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ k : I --> RR ) -> { 0 } C_ RR ) |
| 40 |
36 39
|
unssd |
|- ( ( ph /\ k : I --> RR ) -> ( ran k u. { 0 } ) C_ RR ) |
| 41 |
|
ffn |
|- ( k : I --> RR -> k Fn I ) |
| 42 |
|
dffn4 |
|- ( k Fn I <-> k : I -onto-> ran k ) |
| 43 |
41 42
|
sylib |
|- ( k : I --> RR -> k : I -onto-> ran k ) |
| 44 |
|
fofi |
|- ( ( I e. Fin /\ k : I -onto-> ran k ) -> ran k e. Fin ) |
| 45 |
7 43 44
|
syl2an |
|- ( ( ph /\ k : I --> RR ) -> ran k e. Fin ) |
| 46 |
|
snfi |
|- { 0 } e. Fin |
| 47 |
|
unfi |
|- ( ( ran k e. Fin /\ { 0 } e. Fin ) -> ( ran k u. { 0 } ) e. Fin ) |
| 48 |
45 46 47
|
sylancl |
|- ( ( ph /\ k : I --> RR ) -> ( ran k u. { 0 } ) e. Fin ) |
| 49 |
|
ssun2 |
|- { 0 } C_ ( ran k u. { 0 } ) |
| 50 |
|
c0ex |
|- 0 e. _V |
| 51 |
50
|
snid |
|- 0 e. { 0 } |
| 52 |
49 51
|
sselii |
|- 0 e. ( ran k u. { 0 } ) |
| 53 |
|
ne0i |
|- ( 0 e. ( ran k u. { 0 } ) -> ( ran k u. { 0 } ) =/= (/) ) |
| 54 |
52 53
|
mp1i |
|- ( ( ph /\ k : I --> RR ) -> ( ran k u. { 0 } ) =/= (/) ) |
| 55 |
|
ltso |
|- < Or RR |
| 56 |
|
fisupcl |
|- ( ( < Or RR /\ ( ( ran k u. { 0 } ) e. Fin /\ ( ran k u. { 0 } ) =/= (/) /\ ( ran k u. { 0 } ) C_ RR ) ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. ( ran k u. { 0 } ) ) |
| 57 |
55 56
|
mpan |
|- ( ( ( ran k u. { 0 } ) e. Fin /\ ( ran k u. { 0 } ) =/= (/) /\ ( ran k u. { 0 } ) C_ RR ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. ( ran k u. { 0 } ) ) |
| 58 |
48 54 40 57
|
syl3anc |
|- ( ( ph /\ k : I --> RR ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. ( ran k u. { 0 } ) ) |
| 59 |
40 58
|
sseldd |
|- ( ( ph /\ k : I --> RR ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) |
| 60 |
59
|
adantrr |
|- ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) |
| 61 |
|
metf |
|- ( D e. ( Met ` B ) -> D : ( B X. B ) --> RR ) |
| 62 |
|
ffn |
|- ( D : ( B X. B ) --> RR -> D Fn ( B X. B ) ) |
| 63 |
26 61 62
|
3syl |
|- ( ph -> D Fn ( B X. B ) ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> D Fn ( B X. B ) ) |
| 65 |
26
|
ad2antrr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> D e. ( Met ` B ) ) |
| 66 |
|
simprl |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> f e. B ) |
| 67 |
66
|
adantr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> f e. B ) |
| 68 |
|
simprr |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> g e. B ) |
| 69 |
68
|
adantr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> g e. B ) |
| 70 |
|
metcl |
|- ( ( D e. ( Met ` B ) /\ f e. B /\ g e. B ) -> ( f D g ) e. RR ) |
| 71 |
65 67 69 70
|
syl3anc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( f D g ) e. RR ) |
| 72 |
|
metge0 |
|- ( ( D e. ( Met ` B ) /\ f e. B /\ g e. B ) -> 0 <_ ( f D g ) ) |
| 73 |
65 67 69 72
|
syl3anc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> 0 <_ ( f D g ) ) |
| 74 |
22
|
oveqdr |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f D g ) = ( f ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) g ) ) |
| 75 |
6
|
adantr |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> S e. W ) |
| 76 |
7
|
adantr |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> I e. Fin ) |
| 77 |
|
fvexd |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( R ` x ) e. _V ) |
| 78 |
77
|
ralrimiva |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> A. x e. I ( R ` x ) e. _V ) |
| 79 |
24
|
adantr |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> B = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
| 80 |
66 79
|
eleqtrd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> f e. ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
| 81 |
68 79
|
eleqtrd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> g e. ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
| 82 |
10 11 75 76 78 80 81 3 4 12
|
prdsdsval3 |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) g ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 83 |
74 82
|
eqtrd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f D g ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 84 |
83
|
adantr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( f D g ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 85 |
15
|
adantlr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> E e. ( Met ` V ) ) |
| 86 |
10 11 75 76 78 3 80
|
prdsbascl |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> A. x e. I ( f ` x ) e. V ) |
| 87 |
86
|
r19.21bi |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( f ` x ) e. V ) |
| 88 |
10 11 75 76 78 3 81
|
prdsbascl |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> A. x e. I ( g ` x ) e. V ) |
| 89 |
88
|
r19.21bi |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( g ` x ) e. V ) |
| 90 |
|
metcl |
|- ( ( E e. ( Met ` V ) /\ ( f ` x ) e. V /\ ( g ` x ) e. V ) -> ( ( f ` x ) E ( g ` x ) ) e. RR ) |
| 91 |
85 87 89 90
|
syl3anc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ x e. I ) -> ( ( f ` x ) E ( g ` x ) ) e. RR ) |
| 92 |
91
|
ad2ant2r |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( f ` x ) E ( g ` x ) ) e. RR ) |
| 93 |
|
ffvelcdm |
|- ( ( k : I --> RR /\ x e. I ) -> ( k ` x ) e. RR ) |
| 94 |
93
|
ad2ant2lr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( k ` x ) e. RR ) |
| 95 |
59
|
adantlr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) |
| 96 |
95
|
adantr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) |
| 97 |
|
simprr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) |
| 98 |
87
|
ad2ant2r |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( f ` x ) e. V ) |
| 99 |
89
|
ad2ant2r |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( g ` x ) e. V ) |
| 100 |
97 98 99
|
fovcdmd |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( f ` x ) E ( g ` x ) ) e. ( 0 [,] ( k ` x ) ) ) |
| 101 |
|
0re |
|- 0 e. RR |
| 102 |
|
elicc2 |
|- ( ( 0 e. RR /\ ( k ` x ) e. RR ) -> ( ( ( f ` x ) E ( g ` x ) ) e. ( 0 [,] ( k ` x ) ) <-> ( ( ( f ` x ) E ( g ` x ) ) e. RR /\ 0 <_ ( ( f ` x ) E ( g ` x ) ) /\ ( ( f ` x ) E ( g ` x ) ) <_ ( k ` x ) ) ) ) |
| 103 |
101 94 102
|
sylancr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( ( f ` x ) E ( g ` x ) ) e. ( 0 [,] ( k ` x ) ) <-> ( ( ( f ` x ) E ( g ` x ) ) e. RR /\ 0 <_ ( ( f ` x ) E ( g ` x ) ) /\ ( ( f ` x ) E ( g ` x ) ) <_ ( k ` x ) ) ) ) |
| 104 |
100 103
|
mpbid |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( ( f ` x ) E ( g ` x ) ) e. RR /\ 0 <_ ( ( f ` x ) E ( g ` x ) ) /\ ( ( f ` x ) E ( g ` x ) ) <_ ( k ` x ) ) ) |
| 105 |
104
|
simp3d |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( f ` x ) E ( g ` x ) ) <_ ( k ` x ) ) |
| 106 |
40
|
adantlr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) -> ( ran k u. { 0 } ) C_ RR ) |
| 107 |
106
|
adantr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ran k u. { 0 } ) C_ RR ) |
| 108 |
52 53
|
mp1i |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ran k u. { 0 } ) =/= (/) ) |
| 109 |
|
fimaxre2 |
|- ( ( ( ran k u. { 0 } ) C_ RR /\ ( ran k u. { 0 } ) e. Fin ) -> E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) |
| 110 |
40 48 109
|
syl2anc |
|- ( ( ph /\ k : I --> RR ) -> E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) |
| 111 |
110
|
adantlr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) -> E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) |
| 112 |
111
|
adantr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) |
| 113 |
|
ssun1 |
|- ran k C_ ( ran k u. { 0 } ) |
| 114 |
41
|
ad2antlr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> k Fn I ) |
| 115 |
|
simprl |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> x e. I ) |
| 116 |
|
fnfvelrn |
|- ( ( k Fn I /\ x e. I ) -> ( k ` x ) e. ran k ) |
| 117 |
114 115 116
|
syl2anc |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( k ` x ) e. ran k ) |
| 118 |
113 117
|
sselid |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( k ` x ) e. ( ran k u. { 0 } ) ) |
| 119 |
|
suprub |
|- ( ( ( ( ran k u. { 0 } ) C_ RR /\ ( ran k u. { 0 } ) =/= (/) /\ E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) /\ ( k ` x ) e. ( ran k u. { 0 } ) ) -> ( k ` x ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 120 |
107 108 112 118 119
|
syl31anc |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( k ` x ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 121 |
92 94 96 105 120
|
letrd |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ ( x e. I /\ E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 122 |
121
|
expr |
|- ( ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) /\ x e. I ) -> ( E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) -> ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 123 |
122
|
ralimdva |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ k : I --> RR ) -> ( A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) -> A. x e. I ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 124 |
123
|
impr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> A. x e. I ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 125 |
|
ovex |
|- ( ( f ` x ) E ( g ` x ) ) e. _V |
| 126 |
125
|
rgenw |
|- A. x e. I ( ( f ` x ) E ( g ` x ) ) e. _V |
| 127 |
|
eqid |
|- ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) |
| 128 |
|
breq1 |
|- ( w = ( ( f ` x ) E ( g ` x ) ) -> ( w <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 129 |
127 128
|
ralrnmptw |
|- ( A. x e. I ( ( f ` x ) E ( g ` x ) ) e. _V -> ( A. w e. ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> A. x e. I ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 130 |
126 129
|
ax-mp |
|- ( A. w e. ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> A. x e. I ( ( f ` x ) E ( g ` x ) ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 131 |
124 130
|
sylibr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> A. w e. ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 132 |
40
|
ad2ant2r |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ran k u. { 0 } ) C_ RR ) |
| 133 |
52 53
|
mp1i |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ran k u. { 0 } ) =/= (/) ) |
| 134 |
110
|
ad2ant2r |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) |
| 135 |
52
|
a1i |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> 0 e. ( ran k u. { 0 } ) ) |
| 136 |
|
suprub |
|- ( ( ( ( ran k u. { 0 } ) C_ RR /\ ( ran k u. { 0 } ) =/= (/) /\ E. z e. RR A. w e. ( ran k u. { 0 } ) w <_ z ) /\ 0 e. ( ran k u. { 0 } ) ) -> 0 <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 137 |
132 133 134 135 136
|
syl31anc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> 0 <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 138 |
|
elsni |
|- ( w e. { 0 } -> w = 0 ) |
| 139 |
138
|
breq1d |
|- ( w e. { 0 } -> ( w <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> 0 <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 140 |
137 139
|
syl5ibrcom |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( w e. { 0 } -> w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 141 |
140
|
ralrimiv |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> A. w e. { 0 } w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 142 |
|
ralunb |
|- ( A. w e. ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> ( A. w e. ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) /\ A. w e. { 0 } w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 143 |
131 141 142
|
sylanbrc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> A. w e. ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 144 |
91
|
fmpttd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) : I --> RR ) |
| 145 |
144
|
frnd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) C_ RR ) |
| 146 |
|
0red |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> 0 e. RR ) |
| 147 |
146
|
snssd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> { 0 } C_ RR ) |
| 148 |
145 147
|
unssd |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) C_ RR ) |
| 149 |
|
ressxr |
|- RR C_ RR* |
| 150 |
148 149
|
sstrdi |
|- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) C_ RR* ) |
| 151 |
150
|
adantr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) C_ RR* ) |
| 152 |
60
|
adantlr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) |
| 153 |
152
|
rexrd |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> sup ( ( ran k u. { 0 } ) , RR , < ) e. RR* ) |
| 154 |
|
supxrleub |
|- ( ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) C_ RR* /\ sup ( ( ran k u. { 0 } ) , RR , < ) e. RR* ) -> ( sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> A. w e. ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 155 |
151 153 154
|
syl2anc |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) <-> A. w e. ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) w <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 156 |
143 155
|
mpbird |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> sup ( ( ran ( x e. I |-> ( ( f ` x ) E ( g ` x ) ) ) u. { 0 } ) , RR* , < ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 157 |
84 156
|
eqbrtrd |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( f D g ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) |
| 158 |
|
elicc2 |
|- ( ( 0 e. RR /\ sup ( ( ran k u. { 0 } ) , RR , < ) e. RR ) -> ( ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) <-> ( ( f D g ) e. RR /\ 0 <_ ( f D g ) /\ ( f D g ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) ) |
| 159 |
101 152 158
|
sylancr |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) <-> ( ( f D g ) e. RR /\ 0 <_ ( f D g ) /\ ( f D g ) <_ sup ( ( ran k u. { 0 } ) , RR , < ) ) ) ) |
| 160 |
71 73 157 159
|
mpbir3and |
|- ( ( ( ph /\ ( f e. B /\ g e. B ) ) /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 161 |
160
|
an32s |
|- ( ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) /\ ( f e. B /\ g e. B ) ) -> ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 162 |
161
|
ralrimivva |
|- ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> A. f e. B A. g e. B ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 163 |
|
ffnov |
|- ( D : ( B X. B ) --> ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) <-> ( D Fn ( B X. B ) /\ A. f e. B A. g e. B ( f D g ) e. ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) ) |
| 164 |
64 162 163
|
sylanbrc |
|- ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> D : ( B X. B ) --> ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 165 |
|
oveq2 |
|- ( m = sup ( ( ran k u. { 0 } ) , RR , < ) -> ( 0 [,] m ) = ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) |
| 166 |
165
|
feq3d |
|- ( m = sup ( ( ran k u. { 0 } ) , RR , < ) -> ( D : ( B X. B ) --> ( 0 [,] m ) <-> D : ( B X. B ) --> ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) ) |
| 167 |
166
|
rspcev |
|- ( ( sup ( ( ran k u. { 0 } ) , RR , < ) e. RR /\ D : ( B X. B ) --> ( 0 [,] sup ( ( ran k u. { 0 } ) , RR , < ) ) ) -> E. m e. RR D : ( B X. B ) --> ( 0 [,] m ) ) |
| 168 |
60 164 167
|
syl2anc |
|- ( ( ph /\ ( k : I --> RR /\ A. x e. I E : ( V X. V ) --> ( 0 [,] ( k ` x ) ) ) ) -> E. m e. RR D : ( B X. B ) --> ( 0 [,] m ) ) |
| 169 |
34 168
|
exlimddv |
|- ( ph -> E. m e. RR D : ( B X. B ) --> ( 0 [,] m ) ) |
| 170 |
|
isbnd3 |
|- ( D e. ( Bnd ` B ) <-> ( D e. ( Met ` B ) /\ E. m e. RR D : ( B X. B ) --> ( 0 [,] m ) ) ) |
| 171 |
26 169 170
|
sylanbrc |
|- ( ph -> D e. ( Bnd ` B ) ) |