Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbnd.y |
|- Y = ( S Xs_ R ) |
2 |
|
prdsbnd.b |
|- B = ( Base ` Y ) |
3 |
|
prdsbnd.v |
|- V = ( Base ` ( R ` x ) ) |
4 |
|
prdsbnd.e |
|- E = ( ( dist ` ( R ` x ) ) |` ( V X. V ) ) |
5 |
|
prdsbnd.d |
|- D = ( dist ` Y ) |
6 |
|
prdsbnd.s |
|- ( ph -> S e. W ) |
7 |
|
prdsbnd.i |
|- ( ph -> I e. Fin ) |
8 |
|
prdsbnd.r |
|- ( ph -> R Fn I ) |
9 |
|
prdsbnd2.c |
|- C = ( D |` ( A X. A ) ) |
10 |
|
prdsbnd2.e |
|- ( ( ph /\ x e. I ) -> E e. ( Met ` V ) ) |
11 |
|
prdsbnd2.m |
|- ( ( ph /\ x e. I ) -> ( ( E |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( E |` ( y X. y ) ) e. ( Bnd ` y ) ) ) |
12 |
|
totbndbnd |
|- ( C e. ( TotBnd ` A ) -> C e. ( Bnd ` A ) ) |
13 |
|
bndmet |
|- ( C e. ( Bnd ` A ) -> C e. ( Met ` A ) ) |
14 |
|
0totbnd |
|- ( A = (/) -> ( C e. ( TotBnd ` A ) <-> C e. ( Met ` A ) ) ) |
15 |
13 14
|
syl5ibr |
|- ( A = (/) -> ( C e. ( Bnd ` A ) -> C e. ( TotBnd ` A ) ) ) |
16 |
15
|
a1i |
|- ( ph -> ( A = (/) -> ( C e. ( Bnd ` A ) -> C e. ( TotBnd ` A ) ) ) ) |
17 |
|
n0 |
|- ( A =/= (/) <-> E. a a e. A ) |
18 |
|
simprr |
|- ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) -> C e. ( Bnd ` A ) ) |
19 |
|
eqid |
|- ( S Xs_ ( x e. I |-> ( R ` x ) ) ) = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) |
20 |
|
eqid |
|- ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
21 |
|
eqid |
|- ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) = ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
22 |
|
fvexd |
|- ( ( ph /\ x e. I ) -> ( R ` x ) e. _V ) |
23 |
19 20 3 4 21 6 7 22 10
|
prdsmet |
|- ( ph -> ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) e. ( Met ` ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) ) |
24 |
|
dffn5 |
|- ( R Fn I <-> R = ( x e. I |-> ( R ` x ) ) ) |
25 |
8 24
|
sylib |
|- ( ph -> R = ( x e. I |-> ( R ` x ) ) ) |
26 |
25
|
oveq2d |
|- ( ph -> ( S Xs_ R ) = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
27 |
1 26
|
eqtrid |
|- ( ph -> Y = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
28 |
27
|
fveq2d |
|- ( ph -> ( dist ` Y ) = ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
29 |
5 28
|
eqtrid |
|- ( ph -> D = ( dist ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
30 |
27
|
fveq2d |
|- ( ph -> ( Base ` Y ) = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
31 |
2 30
|
eqtrid |
|- ( ph -> B = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
32 |
31
|
fveq2d |
|- ( ph -> ( Met ` B ) = ( Met ` ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) ) |
33 |
23 29 32
|
3eltr4d |
|- ( ph -> D e. ( Met ` B ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) -> D e. ( Met ` B ) ) |
35 |
|
simpr |
|- ( ( a e. A /\ C e. ( Bnd ` A ) ) -> C e. ( Bnd ` A ) ) |
36 |
9
|
bnd2lem |
|- ( ( D e. ( Met ` B ) /\ C e. ( Bnd ` A ) ) -> A C_ B ) |
37 |
33 35 36
|
syl2an |
|- ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) -> A C_ B ) |
38 |
|
simprl |
|- ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) -> a e. A ) |
39 |
37 38
|
sseldd |
|- ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) -> a e. B ) |
40 |
9
|
ssbnd |
|- ( ( D e. ( Met ` B ) /\ a e. B ) -> ( C e. ( Bnd ` A ) <-> E. r e. RR A C_ ( a ( ball ` D ) r ) ) ) |
41 |
34 39 40
|
syl2anc |
|- ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) -> ( C e. ( Bnd ` A ) <-> E. r e. RR A C_ ( a ( ball ` D ) r ) ) ) |
42 |
18 41
|
mpbid |
|- ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) -> E. r e. RR A C_ ( a ( ball ` D ) r ) ) |
43 |
|
simprr |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> A C_ ( a ( ball ` D ) r ) ) |
44 |
|
xpss12 |
|- ( ( A C_ ( a ( ball ` D ) r ) /\ A C_ ( a ( ball ` D ) r ) ) -> ( A X. A ) C_ ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) |
45 |
43 43 44
|
syl2anc |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> ( A X. A ) C_ ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) |
46 |
45
|
resabs1d |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> ( ( D |` ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) |` ( A X. A ) ) = ( D |` ( A X. A ) ) ) |
47 |
46 9
|
eqtr4di |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> ( ( D |` ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) |` ( A X. A ) ) = C ) |
48 |
|
simpll |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> ph ) |
49 |
39
|
adantr |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> a e. B ) |
50 |
|
simprl |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> r e. RR ) |
51 |
38
|
adantr |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> a e. A ) |
52 |
43 51
|
sseldd |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> a e. ( a ( ball ` D ) r ) ) |
53 |
52
|
ne0d |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> ( a ( ball ` D ) r ) =/= (/) ) |
54 |
33
|
ad2antrr |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> D e. ( Met ` B ) ) |
55 |
|
metxmet |
|- ( D e. ( Met ` B ) -> D e. ( *Met ` B ) ) |
56 |
54 55
|
syl |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> D e. ( *Met ` B ) ) |
57 |
50
|
rexrd |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> r e. RR* ) |
58 |
|
xbln0 |
|- ( ( D e. ( *Met ` B ) /\ a e. B /\ r e. RR* ) -> ( ( a ( ball ` D ) r ) =/= (/) <-> 0 < r ) ) |
59 |
56 49 57 58
|
syl3anc |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> ( ( a ( ball ` D ) r ) =/= (/) <-> 0 < r ) ) |
60 |
53 59
|
mpbid |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> 0 < r ) |
61 |
50 60
|
elrpd |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> r e. RR+ ) |
62 |
|
eqid |
|- ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) = ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) |
63 |
|
eqid |
|- ( Base ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) = ( Base ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) |
64 |
|
eqid |
|- ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) = ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) |
65 |
|
eqid |
|- ( ( dist ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) |` ( ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) X. ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) ) ) = ( ( dist ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) |` ( ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) X. ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) ) ) |
66 |
|
eqid |
|- ( dist ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) = ( dist ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) |
67 |
6
|
adantr |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> S e. W ) |
68 |
7
|
adantr |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> I e. Fin ) |
69 |
|
ovex |
|- ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) e. _V |
70 |
|
fveq2 |
|- ( y = x -> ( R ` y ) = ( R ` x ) ) |
71 |
|
2fveq3 |
|- ( y = x -> ( dist ` ( R ` y ) ) = ( dist ` ( R ` x ) ) ) |
72 |
|
2fveq3 |
|- ( y = x -> ( Base ` ( R ` y ) ) = ( Base ` ( R ` x ) ) ) |
73 |
72 3
|
eqtr4di |
|- ( y = x -> ( Base ` ( R ` y ) ) = V ) |
74 |
73
|
sqxpeqd |
|- ( y = x -> ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) = ( V X. V ) ) |
75 |
71 74
|
reseq12d |
|- ( y = x -> ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) = ( ( dist ` ( R ` x ) ) |` ( V X. V ) ) ) |
76 |
75 4
|
eqtr4di |
|- ( y = x -> ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) = E ) |
77 |
76
|
fveq2d |
|- ( y = x -> ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) = ( ball ` E ) ) |
78 |
|
fveq2 |
|- ( y = x -> ( a ` y ) = ( a ` x ) ) |
79 |
|
eqidd |
|- ( y = x -> r = r ) |
80 |
77 78 79
|
oveq123d |
|- ( y = x -> ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) = ( ( a ` x ) ( ball ` E ) r ) ) |
81 |
70 80
|
oveq12d |
|- ( y = x -> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) = ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) |
82 |
81
|
cbvmptv |
|- ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) = ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) |
83 |
69 82
|
fnmpti |
|- ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) Fn I |
84 |
83
|
a1i |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) Fn I ) |
85 |
10
|
adantlr |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> E e. ( Met ` V ) ) |
86 |
|
metxmet |
|- ( E e. ( Met ` V ) -> E e. ( *Met ` V ) ) |
87 |
85 86
|
syl |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> E e. ( *Met ` V ) ) |
88 |
22
|
ralrimiva |
|- ( ph -> A. x e. I ( R ` x ) e. _V ) |
89 |
88
|
adantr |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> A. x e. I ( R ` x ) e. _V ) |
90 |
|
simprl |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> a e. B ) |
91 |
31
|
adantr |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> B = ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
92 |
90 91
|
eleqtrd |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> a e. ( Base ` ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) ) |
93 |
19 20 67 68 89 3 92
|
prdsbascl |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> A. x e. I ( a ` x ) e. V ) |
94 |
93
|
r19.21bi |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( a ` x ) e. V ) |
95 |
|
simplrr |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> r e. RR+ ) |
96 |
95
|
rpred |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> r e. RR ) |
97 |
|
blbnd |
|- ( ( E e. ( *Met ` V ) /\ ( a ` x ) e. V /\ r e. RR ) -> ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( Bnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) |
98 |
87 94 96 97
|
syl3anc |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( Bnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) |
99 |
|
ovex |
|- ( ( a ` x ) ( ball ` E ) r ) e. _V |
100 |
|
xpeq12 |
|- ( ( y = ( ( a ` x ) ( ball ` E ) r ) /\ y = ( ( a ` x ) ( ball ` E ) r ) ) -> ( y X. y ) = ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) |
101 |
100
|
anidms |
|- ( y = ( ( a ` x ) ( ball ` E ) r ) -> ( y X. y ) = ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) |
102 |
101
|
reseq2d |
|- ( y = ( ( a ` x ) ( ball ` E ) r ) -> ( E |` ( y X. y ) ) = ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
103 |
|
fveq2 |
|- ( y = ( ( a ` x ) ( ball ` E ) r ) -> ( TotBnd ` y ) = ( TotBnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) |
104 |
102 103
|
eleq12d |
|- ( y = ( ( a ` x ) ( ball ` E ) r ) -> ( ( E |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( TotBnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
105 |
|
fveq2 |
|- ( y = ( ( a ` x ) ( ball ` E ) r ) -> ( Bnd ` y ) = ( Bnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) |
106 |
102 105
|
eleq12d |
|- ( y = ( ( a ` x ) ( ball ` E ) r ) -> ( ( E |` ( y X. y ) ) e. ( Bnd ` y ) <-> ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( Bnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
107 |
104 106
|
bibi12d |
|- ( y = ( ( a ` x ) ( ball ` E ) r ) -> ( ( ( E |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( E |` ( y X. y ) ) e. ( Bnd ` y ) ) <-> ( ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( TotBnd ` ( ( a ` x ) ( ball ` E ) r ) ) <-> ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( Bnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) |
108 |
107
|
imbi2d |
|- ( y = ( ( a ` x ) ( ball ` E ) r ) -> ( ( ( ph /\ x e. I ) -> ( ( E |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( E |` ( y X. y ) ) e. ( Bnd ` y ) ) ) <-> ( ( ph /\ x e. I ) -> ( ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( TotBnd ` ( ( a ` x ) ( ball ` E ) r ) ) <-> ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( Bnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) ) |
109 |
99 108 11
|
vtocl |
|- ( ( ph /\ x e. I ) -> ( ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( TotBnd ` ( ( a ` x ) ( ball ` E ) r ) ) <-> ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( Bnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
110 |
109
|
adantlr |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( TotBnd ` ( ( a ` x ) ( ball ` E ) r ) ) <-> ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( Bnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
111 |
98 110
|
mpbird |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) e. ( TotBnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) |
112 |
|
eqid |
|- ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) = ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) |
113 |
81 112 69
|
fvmpt |
|- ( x e. I -> ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) = ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) |
114 |
113
|
adantl |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) = ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) |
115 |
114
|
fveq2d |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( dist ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) = ( dist ` ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
116 |
|
eqid |
|- ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) = ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) |
117 |
|
eqid |
|- ( dist ` ( R ` x ) ) = ( dist ` ( R ` x ) ) |
118 |
116 117
|
ressds |
|- ( ( ( a ` x ) ( ball ` E ) r ) e. _V -> ( dist ` ( R ` x ) ) = ( dist ` ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
119 |
99 118
|
ax-mp |
|- ( dist ` ( R ` x ) ) = ( dist ` ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) |
120 |
115 119
|
eqtr4di |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( dist ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) = ( dist ` ( R ` x ) ) ) |
121 |
114
|
fveq2d |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) = ( Base ` ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
122 |
|
rpxr |
|- ( r e. RR+ -> r e. RR* ) |
123 |
122
|
ad2antll |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> r e. RR* ) |
124 |
123
|
adantr |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> r e. RR* ) |
125 |
|
blssm |
|- ( ( E e. ( *Met ` V ) /\ ( a ` x ) e. V /\ r e. RR* ) -> ( ( a ` x ) ( ball ` E ) r ) C_ V ) |
126 |
87 94 124 125
|
syl3anc |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( a ` x ) ( ball ` E ) r ) C_ V ) |
127 |
116 3
|
ressbas2 |
|- ( ( ( a ` x ) ( ball ` E ) r ) C_ V -> ( ( a ` x ) ( ball ` E ) r ) = ( Base ` ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
128 |
126 127
|
syl |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( a ` x ) ( ball ` E ) r ) = ( Base ` ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
129 |
121 128
|
eqtr4d |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) = ( ( a ` x ) ( ball ` E ) r ) ) |
130 |
129
|
sqxpeqd |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) X. ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) ) = ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) |
131 |
120 130
|
reseq12d |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( dist ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) |` ( ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) X. ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) ) ) = ( ( dist ` ( R ` x ) ) |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
132 |
4
|
reseq1i |
|- ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) = ( ( ( dist ` ( R ` x ) ) |` ( V X. V ) ) |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) |
133 |
|
xpss12 |
|- ( ( ( ( a ` x ) ( ball ` E ) r ) C_ V /\ ( ( a ` x ) ( ball ` E ) r ) C_ V ) -> ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) C_ ( V X. V ) ) |
134 |
126 126 133
|
syl2anc |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) C_ ( V X. V ) ) |
135 |
134
|
resabs1d |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( ( dist ` ( R ` x ) ) |` ( V X. V ) ) |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) = ( ( dist ` ( R ` x ) ) |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
136 |
132 135
|
eqtrid |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) = ( ( dist ` ( R ` x ) ) |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
137 |
131 136
|
eqtr4d |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( dist ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) |` ( ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) X. ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) ) ) = ( E |` ( ( ( a ` x ) ( ball ` E ) r ) X. ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
138 |
129
|
fveq2d |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( TotBnd ` ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) ) = ( TotBnd ` ( ( a ` x ) ( ball ` E ) r ) ) ) |
139 |
111 137 138
|
3eltr4d |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( dist ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) |` ( ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) X. ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) ) ) e. ( TotBnd ` ( Base ` ( ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ` x ) ) ) ) |
140 |
62 63 64 65 66 67 68 84 139
|
prdstotbnd |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( dist ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) e. ( TotBnd ` ( Base ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) ) ) |
141 |
27
|
adantr |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> Y = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) ) |
142 |
|
eqidd |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) = ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) |
143 |
|
eqid |
|- ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) = ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) |
144 |
82
|
oveq2i |
|- ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) = ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
145 |
144
|
fveq2i |
|- ( dist ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) = ( dist ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) |
146 |
|
fvexd |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( R ` x ) e. _V ) |
147 |
99
|
a1i |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( a ` x ) ( ball ` E ) r ) e. _V ) |
148 |
141 142 143 5 145 67 67 68 146 147
|
ressprdsds |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( dist ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) = ( D |` ( ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) X. ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) ) ) ) |
149 |
128
|
ixpeq2dva |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> X_ x e. I ( ( a ` x ) ( ball ` E ) r ) = X_ x e. I ( Base ` ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
150 |
70
|
cbvmptv |
|- ( y e. I |-> ( R ` y ) ) = ( x e. I |-> ( R ` x ) ) |
151 |
150
|
oveq2i |
|- ( S Xs_ ( y e. I |-> ( R ` y ) ) ) = ( S Xs_ ( x e. I |-> ( R ` x ) ) ) |
152 |
27 151
|
eqtr4di |
|- ( ph -> Y = ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) |
153 |
152
|
fveq2d |
|- ( ph -> ( dist ` Y ) = ( dist ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) ) |
154 |
5 153
|
eqtrid |
|- ( ph -> D = ( dist ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) ) |
155 |
154
|
fveq2d |
|- ( ph -> ( ball ` D ) = ( ball ` ( dist ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) ) ) |
156 |
155
|
oveqdr |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( a ( ball ` D ) r ) = ( a ( ball ` ( dist ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) ) r ) ) |
157 |
|
eqid |
|- ( Base ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) = ( Base ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) |
158 |
|
eqid |
|- ( dist ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) = ( dist ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) |
159 |
152
|
fveq2d |
|- ( ph -> ( Base ` Y ) = ( Base ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) ) |
160 |
2 159
|
eqtrid |
|- ( ph -> B = ( Base ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) ) |
161 |
160
|
adantr |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> B = ( Base ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) ) |
162 |
90 161
|
eleqtrd |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> a e. ( Base ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) ) |
163 |
|
rpgt0 |
|- ( r e. RR+ -> 0 < r ) |
164 |
163
|
ad2antll |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> 0 < r ) |
165 |
151 157 3 4 158 67 68 146 87 162 123 164
|
prdsbl |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( a ( ball ` ( dist ` ( S Xs_ ( y e. I |-> ( R ` y ) ) ) ) ) r ) = X_ x e. I ( ( a ` x ) ( ball ` E ) r ) ) |
166 |
156 165
|
eqtrd |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( a ( ball ` D ) r ) = X_ x e. I ( ( a ` x ) ( ball ` E ) r ) ) |
167 |
|
eqid |
|- ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) = ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
168 |
69
|
a1i |
|- ( ( ( ph /\ ( a e. B /\ r e. RR+ ) ) /\ x e. I ) -> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) e. _V ) |
169 |
168
|
ralrimiva |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> A. x e. I ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) e. _V ) |
170 |
|
eqid |
|- ( Base ` ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) = ( Base ` ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) |
171 |
167 143 67 68 169 170
|
prdsbas3 |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) = X_ x e. I ( Base ` ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) |
172 |
149 166 171
|
3eqtr4rd |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) = ( a ( ball ` D ) r ) ) |
173 |
172
|
sqxpeqd |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) X. ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) ) = ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) |
174 |
173
|
reseq2d |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( D |` ( ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) X. ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) ) ) = ( D |` ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) ) |
175 |
148 174
|
eqtrd |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( dist ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) = ( D |` ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) ) |
176 |
144
|
fveq2i |
|- ( Base ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) = ( Base ` ( S Xs_ ( x e. I |-> ( ( R ` x ) |`s ( ( a ` x ) ( ball ` E ) r ) ) ) ) ) |
177 |
176 172
|
eqtrid |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( Base ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) = ( a ( ball ` D ) r ) ) |
178 |
177
|
fveq2d |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( TotBnd ` ( Base ` ( S Xs_ ( y e. I |-> ( ( R ` y ) |`s ( ( a ` y ) ( ball ` ( ( dist ` ( R ` y ) ) |` ( ( Base ` ( R ` y ) ) X. ( Base ` ( R ` y ) ) ) ) ) r ) ) ) ) ) ) = ( TotBnd ` ( a ( ball ` D ) r ) ) ) |
179 |
140 175 178
|
3eltr3d |
|- ( ( ph /\ ( a e. B /\ r e. RR+ ) ) -> ( D |` ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) e. ( TotBnd ` ( a ( ball ` D ) r ) ) ) |
180 |
48 49 61 179
|
syl12anc |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> ( D |` ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) e. ( TotBnd ` ( a ( ball ` D ) r ) ) ) |
181 |
|
totbndss |
|- ( ( ( D |` ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) e. ( TotBnd ` ( a ( ball ` D ) r ) ) /\ A C_ ( a ( ball ` D ) r ) ) -> ( ( D |` ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) |` ( A X. A ) ) e. ( TotBnd ` A ) ) |
182 |
180 43 181
|
syl2anc |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> ( ( D |` ( ( a ( ball ` D ) r ) X. ( a ( ball ` D ) r ) ) ) |` ( A X. A ) ) e. ( TotBnd ` A ) ) |
183 |
47 182
|
eqeltrrd |
|- ( ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) /\ ( r e. RR /\ A C_ ( a ( ball ` D ) r ) ) ) -> C e. ( TotBnd ` A ) ) |
184 |
42 183
|
rexlimddv |
|- ( ( ph /\ ( a e. A /\ C e. ( Bnd ` A ) ) ) -> C e. ( TotBnd ` A ) ) |
185 |
184
|
exp32 |
|- ( ph -> ( a e. A -> ( C e. ( Bnd ` A ) -> C e. ( TotBnd ` A ) ) ) ) |
186 |
185
|
exlimdv |
|- ( ph -> ( E. a a e. A -> ( C e. ( Bnd ` A ) -> C e. ( TotBnd ` A ) ) ) ) |
187 |
17 186
|
syl5bi |
|- ( ph -> ( A =/= (/) -> ( C e. ( Bnd ` A ) -> C e. ( TotBnd ` A ) ) ) ) |
188 |
16 187
|
pm2.61dne |
|- ( ph -> ( C e. ( Bnd ` A ) -> C e. ( TotBnd ` A ) ) ) |
189 |
12 188
|
impbid2 |
|- ( ph -> ( C e. ( TotBnd ` A ) <-> C e. ( Bnd ` A ) ) ) |