| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdscmnd.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdscmnd.i |  |-  ( ph -> I e. W ) | 
						
							| 3 |  | prdscmnd.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prdscmnd.r |  |-  ( ph -> R : I --> CMnd ) | 
						
							| 5 |  | eqidd |  |-  ( ph -> ( Base ` Y ) = ( Base ` Y ) ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> ( +g ` Y ) = ( +g ` Y ) ) | 
						
							| 7 |  | cmnmnd |  |-  ( a e. CMnd -> a e. Mnd ) | 
						
							| 8 | 7 | ssriv |  |-  CMnd C_ Mnd | 
						
							| 9 |  | fss |  |-  ( ( R : I --> CMnd /\ CMnd C_ Mnd ) -> R : I --> Mnd ) | 
						
							| 10 | 4 8 9 | sylancl |  |-  ( ph -> R : I --> Mnd ) | 
						
							| 11 | 1 2 3 10 | prdsmndd |  |-  ( ph -> Y e. Mnd ) | 
						
							| 12 | 4 | 3ad2ant1 |  |-  ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> R : I --> CMnd ) | 
						
							| 13 | 12 | ffvelcdmda |  |-  ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( R ` c ) e. CMnd ) | 
						
							| 14 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 15 | 3 | elexd |  |-  ( ph -> S e. _V ) | 
						
							| 16 | 15 | 3ad2ant1 |  |-  ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> S e. _V ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> S e. _V ) | 
						
							| 18 | 2 | elexd |  |-  ( ph -> I e. _V ) | 
						
							| 19 | 18 | 3ad2ant1 |  |-  ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> I e. _V ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> I e. _V ) | 
						
							| 21 | 4 | ffnd |  |-  ( ph -> R Fn I ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> R Fn I ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> R Fn I ) | 
						
							| 24 |  | simpl2 |  |-  ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> a e. ( Base ` Y ) ) | 
						
							| 25 |  | simpr |  |-  ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> c e. I ) | 
						
							| 26 | 1 14 17 20 23 24 25 | prdsbasprj |  |-  ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( a ` c ) e. ( Base ` ( R ` c ) ) ) | 
						
							| 27 |  | simpl3 |  |-  ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> b e. ( Base ` Y ) ) | 
						
							| 28 | 1 14 17 20 23 27 25 | prdsbasprj |  |-  ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( b ` c ) e. ( Base ` ( R ` c ) ) ) | 
						
							| 29 |  | eqid |  |-  ( Base ` ( R ` c ) ) = ( Base ` ( R ` c ) ) | 
						
							| 30 |  | eqid |  |-  ( +g ` ( R ` c ) ) = ( +g ` ( R ` c ) ) | 
						
							| 31 | 29 30 | cmncom |  |-  ( ( ( R ` c ) e. CMnd /\ ( a ` c ) e. ( Base ` ( R ` c ) ) /\ ( b ` c ) e. ( Base ` ( R ` c ) ) ) -> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) = ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) | 
						
							| 32 | 13 26 28 31 | syl3anc |  |-  ( ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) /\ c e. I ) -> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) = ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) | 
						
							| 33 | 32 | mpteq2dva |  |-  ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( c e. I |-> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) ) = ( c e. I |-> ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) ) | 
						
							| 34 |  | simp2 |  |-  ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> a e. ( Base ` Y ) ) | 
						
							| 35 |  | simp3 |  |-  ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> b e. ( Base ` Y ) ) | 
						
							| 36 |  | eqid |  |-  ( +g ` Y ) = ( +g ` Y ) | 
						
							| 37 | 1 14 16 19 22 34 35 36 | prdsplusgval |  |-  ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( a ( +g ` Y ) b ) = ( c e. I |-> ( ( a ` c ) ( +g ` ( R ` c ) ) ( b ` c ) ) ) ) | 
						
							| 38 | 1 14 16 19 22 35 34 36 | prdsplusgval |  |-  ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( b ( +g ` Y ) a ) = ( c e. I |-> ( ( b ` c ) ( +g ` ( R ` c ) ) ( a ` c ) ) ) ) | 
						
							| 39 | 33 37 38 | 3eqtr4d |  |-  ( ( ph /\ a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> ( a ( +g ` Y ) b ) = ( b ( +g ` Y ) a ) ) | 
						
							| 40 | 5 6 11 39 | iscmnd |  |-  ( ph -> Y e. CMnd ) |