| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdscrngd.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdscrngd.i |  |-  ( ph -> I e. W ) | 
						
							| 3 |  | prdscrngd.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prdscrngd.r |  |-  ( ph -> R : I --> CRing ) | 
						
							| 5 |  | crngring |  |-  ( x e. CRing -> x e. Ring ) | 
						
							| 6 | 5 | ssriv |  |-  CRing C_ Ring | 
						
							| 7 |  | fss |  |-  ( ( R : I --> CRing /\ CRing C_ Ring ) -> R : I --> Ring ) | 
						
							| 8 | 4 6 7 | sylancl |  |-  ( ph -> R : I --> Ring ) | 
						
							| 9 | 1 2 3 8 | prdsringd |  |-  ( ph -> Y e. Ring ) | 
						
							| 10 |  | eqid |  |-  ( S Xs_ ( mulGrp o. R ) ) = ( S Xs_ ( mulGrp o. R ) ) | 
						
							| 11 |  | fnmgp |  |-  mulGrp Fn _V | 
						
							| 12 |  | ssv |  |-  CRing C_ _V | 
						
							| 13 |  | fnssres |  |-  ( ( mulGrp Fn _V /\ CRing C_ _V ) -> ( mulGrp |` CRing ) Fn CRing ) | 
						
							| 14 | 11 12 13 | mp2an |  |-  ( mulGrp |` CRing ) Fn CRing | 
						
							| 15 |  | fvres |  |-  ( x e. CRing -> ( ( mulGrp |` CRing ) ` x ) = ( mulGrp ` x ) ) | 
						
							| 16 |  | eqid |  |-  ( mulGrp ` x ) = ( mulGrp ` x ) | 
						
							| 17 | 16 | crngmgp |  |-  ( x e. CRing -> ( mulGrp ` x ) e. CMnd ) | 
						
							| 18 | 15 17 | eqeltrd |  |-  ( x e. CRing -> ( ( mulGrp |` CRing ) ` x ) e. CMnd ) | 
						
							| 19 | 18 | rgen |  |-  A. x e. CRing ( ( mulGrp |` CRing ) ` x ) e. CMnd | 
						
							| 20 |  | ffnfv |  |-  ( ( mulGrp |` CRing ) : CRing --> CMnd <-> ( ( mulGrp |` CRing ) Fn CRing /\ A. x e. CRing ( ( mulGrp |` CRing ) ` x ) e. CMnd ) ) | 
						
							| 21 | 14 19 20 | mpbir2an |  |-  ( mulGrp |` CRing ) : CRing --> CMnd | 
						
							| 22 |  | fco2 |  |-  ( ( ( mulGrp |` CRing ) : CRing --> CMnd /\ R : I --> CRing ) -> ( mulGrp o. R ) : I --> CMnd ) | 
						
							| 23 | 21 4 22 | sylancr |  |-  ( ph -> ( mulGrp o. R ) : I --> CMnd ) | 
						
							| 24 | 10 2 3 23 | prdscmnd |  |-  ( ph -> ( S Xs_ ( mulGrp o. R ) ) e. CMnd ) | 
						
							| 25 |  | eqidd |  |-  ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) ) | 
						
							| 26 |  | eqid |  |-  ( mulGrp ` Y ) = ( mulGrp ` Y ) | 
						
							| 27 | 4 | ffnd |  |-  ( ph -> R Fn I ) | 
						
							| 28 | 1 26 10 2 3 27 | prdsmgp |  |-  ( ph -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( S Xs_ ( mulGrp o. R ) ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( S Xs_ ( mulGrp o. R ) ) ) ) ) | 
						
							| 29 | 28 | simpld |  |-  ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( S Xs_ ( mulGrp o. R ) ) ) ) | 
						
							| 30 | 28 | simprd |  |-  ( ph -> ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( S Xs_ ( mulGrp o. R ) ) ) ) | 
						
							| 31 | 30 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Y ) ) /\ y e. ( Base ` ( mulGrp ` Y ) ) ) ) -> ( x ( +g ` ( mulGrp ` Y ) ) y ) = ( x ( +g ` ( S Xs_ ( mulGrp o. R ) ) ) y ) ) | 
						
							| 32 | 25 29 31 | cmnpropd |  |-  ( ph -> ( ( mulGrp ` Y ) e. CMnd <-> ( S Xs_ ( mulGrp o. R ) ) e. CMnd ) ) | 
						
							| 33 | 24 32 | mpbird |  |-  ( ph -> ( mulGrp ` Y ) e. CMnd ) | 
						
							| 34 | 26 | iscrng |  |-  ( Y e. CRing <-> ( Y e. Ring /\ ( mulGrp ` Y ) e. CMnd ) ) | 
						
							| 35 | 9 33 34 | sylanbrc |  |-  ( ph -> Y e. CRing ) |