Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbas.p |
|- P = ( S Xs_ R ) |
2 |
|
prdsbas.s |
|- ( ph -> S e. V ) |
3 |
|
prdsbas.r |
|- ( ph -> R e. W ) |
4 |
|
prdsbas.b |
|- B = ( Base ` P ) |
5 |
|
prdsbas.i |
|- ( ph -> dom R = I ) |
6 |
|
prdsds.l |
|- D = ( dist ` P ) |
7 |
|
eqid |
|- ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
8 |
|
xrltso |
|- < Or RR* |
9 |
8
|
supex |
|- sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) e. _V |
10 |
7 9
|
fnmpoi |
|- ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) Fn ( B X. B ) |
11 |
1 2 3 4 5 6
|
prdsds |
|- ( ph -> D = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
12 |
11
|
fneq1d |
|- ( ph -> ( D Fn ( B X. B ) <-> ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) Fn ( B X. B ) ) ) |
13 |
10 12
|
mpbiri |
|- ( ph -> D Fn ( B X. B ) ) |