| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbas.p |  |-  P = ( S Xs_ R ) | 
						
							| 2 |  | prdsbas.s |  |-  ( ph -> S e. V ) | 
						
							| 3 |  | prdsbas.r |  |-  ( ph -> R e. W ) | 
						
							| 4 |  | prdsbas.b |  |-  B = ( Base ` P ) | 
						
							| 5 |  | prdsbas.i |  |-  ( ph -> dom R = I ) | 
						
							| 6 |  | prdsds.l |  |-  D = ( dist ` P ) | 
						
							| 7 |  | eqid |  |-  ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) | 
						
							| 8 |  | xrltso |  |-  < Or RR* | 
						
							| 9 | 8 | supex |  |-  sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) e. _V | 
						
							| 10 | 7 9 | fnmpoi |  |-  ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) Fn ( B X. B ) | 
						
							| 11 | 1 2 3 4 5 6 | prdsds |  |-  ( ph -> D = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) | 
						
							| 12 | 11 | fneq1d |  |-  ( ph -> ( D Fn ( B X. B ) <-> ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) Fn ( B X. B ) ) ) | 
						
							| 13 | 10 12 | mpbiri |  |-  ( ph -> D Fn ( B X. B ) ) |