| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdsbasmpt.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | prdsbasmpt.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prdsbasmpt.i |  |-  ( ph -> I e. W ) | 
						
							| 5 |  | prdsbasmpt.r |  |-  ( ph -> R Fn I ) | 
						
							| 6 |  | prdsplusgval.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | prdsplusgval.g |  |-  ( ph -> G e. B ) | 
						
							| 8 |  | prdsdsval.d |  |-  D = ( dist ` Y ) | 
						
							| 9 |  | fnex |  |-  ( ( R Fn I /\ I e. W ) -> R e. _V ) | 
						
							| 10 | 5 4 9 | syl2anc |  |-  ( ph -> R e. _V ) | 
						
							| 11 |  | fndm |  |-  ( R Fn I -> dom R = I ) | 
						
							| 12 | 5 11 | syl |  |-  ( ph -> dom R = I ) | 
						
							| 13 | 1 3 10 2 12 8 | prdsds |  |-  ( ph -> D = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) | 
						
							| 14 |  | fveq1 |  |-  ( f = F -> ( f ` x ) = ( F ` x ) ) | 
						
							| 15 |  | fveq1 |  |-  ( g = G -> ( g ` x ) = ( G ` x ) ) | 
						
							| 16 | 14 15 | oveqan12d |  |-  ( ( f = F /\ g = G ) -> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) = ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ ( f = F /\ g = G ) ) -> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) = ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) | 
						
							| 18 | 17 | mpteq2dv |  |-  ( ( ph /\ ( f = F /\ g = G ) ) -> ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) ) | 
						
							| 19 | 18 | rneqd |  |-  ( ( ph /\ ( f = F /\ g = G ) ) -> ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) = ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) ) | 
						
							| 20 | 19 | uneq1d |  |-  ( ( ph /\ ( f = F /\ g = G ) ) -> ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) = ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) ) | 
						
							| 21 | 20 | supeq1d |  |-  ( ( ph /\ ( f = F /\ g = G ) ) -> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) | 
						
							| 22 |  | xrltso |  |-  < Or RR* | 
						
							| 23 | 22 | supex |  |-  sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) e. _V | 
						
							| 24 | 23 | a1i |  |-  ( ph -> sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) e. _V ) | 
						
							| 25 | 13 21 6 7 24 | ovmpod |  |-  ( ph -> ( F D G ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |