| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt2.y |  |-  Y = ( S Xs_ ( x e. I |-> R ) ) | 
						
							| 2 |  | prdsbasmpt2.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | prdsbasmpt2.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prdsbasmpt2.i |  |-  ( ph -> I e. W ) | 
						
							| 5 |  | prdsbasmpt2.r |  |-  ( ph -> A. x e. I R e. X ) | 
						
							| 6 |  | prdsdsval2.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | prdsdsval2.g |  |-  ( ph -> G e. B ) | 
						
							| 8 |  | prdsdsval2.e |  |-  E = ( dist ` R ) | 
						
							| 9 |  | prdsdsval2.d |  |-  D = ( dist ` Y ) | 
						
							| 10 |  | eqid |  |-  ( x e. I |-> R ) = ( x e. I |-> R ) | 
						
							| 11 | 10 | fnmpt |  |-  ( A. x e. I R e. X -> ( x e. I |-> R ) Fn I ) | 
						
							| 12 | 5 11 | syl |  |-  ( ph -> ( x e. I |-> R ) Fn I ) | 
						
							| 13 | 1 2 3 4 12 6 7 9 | prdsdsval |  |-  ( ph -> ( F D G ) = sup ( ( ran ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) u. { 0 } ) , RR* , < ) ) | 
						
							| 14 |  | nfcv |  |-  F/_ x ( F ` y ) | 
						
							| 15 |  | nfcv |  |-  F/_ x dist | 
						
							| 16 |  | nffvmpt1 |  |-  F/_ x ( ( x e. I |-> R ) ` y ) | 
						
							| 17 | 15 16 | nffv |  |-  F/_ x ( dist ` ( ( x e. I |-> R ) ` y ) ) | 
						
							| 18 |  | nfcv |  |-  F/_ x ( G ` y ) | 
						
							| 19 | 14 17 18 | nfov |  |-  F/_ x ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) | 
						
							| 20 |  | nfcv |  |-  F/_ y ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) | 
						
							| 21 |  | 2fveq3 |  |-  ( y = x -> ( dist ` ( ( x e. I |-> R ) ` y ) ) = ( dist ` ( ( x e. I |-> R ) ` x ) ) ) | 
						
							| 22 |  | fveq2 |  |-  ( y = x -> ( F ` y ) = ( F ` x ) ) | 
						
							| 23 |  | fveq2 |  |-  ( y = x -> ( G ` y ) = ( G ` x ) ) | 
						
							| 24 | 21 22 23 | oveq123d |  |-  ( y = x -> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) = ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) ) | 
						
							| 25 | 19 20 24 | cbvmpt |  |-  ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) = ( x e. I |-> ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) ) | 
						
							| 26 |  | eqidd |  |-  ( ph -> I = I ) | 
						
							| 27 | 10 | fvmpt2 |  |-  ( ( x e. I /\ R e. X ) -> ( ( x e. I |-> R ) ` x ) = R ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( x e. I /\ R e. X ) -> ( dist ` ( ( x e. I |-> R ) ` x ) ) = ( dist ` R ) ) | 
						
							| 29 | 28 8 | eqtr4di |  |-  ( ( x e. I /\ R e. X ) -> ( dist ` ( ( x e. I |-> R ) ` x ) ) = E ) | 
						
							| 30 | 29 | oveqd |  |-  ( ( x e. I /\ R e. X ) -> ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) = ( ( F ` x ) E ( G ` x ) ) ) | 
						
							| 31 | 30 | ralimiaa |  |-  ( A. x e. I R e. X -> A. x e. I ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) = ( ( F ` x ) E ( G ` x ) ) ) | 
						
							| 32 | 5 31 | syl |  |-  ( ph -> A. x e. I ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) = ( ( F ` x ) E ( G ` x ) ) ) | 
						
							| 33 |  | mpteq12 |  |-  ( ( I = I /\ A. x e. I ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) = ( ( F ` x ) E ( G ` x ) ) ) -> ( x e. I |-> ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) ) | 
						
							| 34 | 26 32 33 | syl2anc |  |-  ( ph -> ( x e. I |-> ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) ) | 
						
							| 35 | 25 34 | eqtrid |  |-  ( ph -> ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) = ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) ) | 
						
							| 36 | 35 | rneqd |  |-  ( ph -> ran ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) = ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) ) | 
						
							| 37 | 36 | uneq1d |  |-  ( ph -> ( ran ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) u. { 0 } ) = ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) ) | 
						
							| 38 | 37 | supeq1d |  |-  ( ph -> sup ( ( ran ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) u. { 0 } ) , RR* , < ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) | 
						
							| 39 | 13 38 | eqtrd |  |-  ( ph -> ( F D G ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |