Step |
Hyp |
Ref |
Expression |
1 |
|
prdsgrpd.y |
|- Y = ( S Xs_ R ) |
2 |
|
prdsgrpd.i |
|- ( ph -> I e. W ) |
3 |
|
prdsgrpd.s |
|- ( ph -> S e. V ) |
4 |
|
prdsgrpd.r |
|- ( ph -> R : I --> Grp ) |
5 |
|
eqidd |
|- ( ph -> ( Base ` Y ) = ( Base ` Y ) ) |
6 |
|
eqidd |
|- ( ph -> ( +g ` Y ) = ( +g ` Y ) ) |
7 |
|
grpmnd |
|- ( a e. Grp -> a e. Mnd ) |
8 |
7
|
ssriv |
|- Grp C_ Mnd |
9 |
|
fss |
|- ( ( R : I --> Grp /\ Grp C_ Mnd ) -> R : I --> Mnd ) |
10 |
4 8 9
|
sylancl |
|- ( ph -> R : I --> Mnd ) |
11 |
1 2 3 10
|
prds0g |
|- ( ph -> ( 0g o. R ) = ( 0g ` Y ) ) |
12 |
1 2 3 10
|
prdsmndd |
|- ( ph -> Y e. Mnd ) |
13 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
14 |
|
eqid |
|- ( +g ` Y ) = ( +g ` Y ) |
15 |
3
|
elexd |
|- ( ph -> S e. _V ) |
16 |
15
|
adantr |
|- ( ( ph /\ a e. ( Base ` Y ) ) -> S e. _V ) |
17 |
2
|
elexd |
|- ( ph -> I e. _V ) |
18 |
17
|
adantr |
|- ( ( ph /\ a e. ( Base ` Y ) ) -> I e. _V ) |
19 |
4
|
adantr |
|- ( ( ph /\ a e. ( Base ` Y ) ) -> R : I --> Grp ) |
20 |
|
simpr |
|- ( ( ph /\ a e. ( Base ` Y ) ) -> a e. ( Base ` Y ) ) |
21 |
|
eqid |
|- ( 0g o. R ) = ( 0g o. R ) |
22 |
|
eqid |
|- ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) = ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) |
23 |
1 13 14 16 18 19 20 21 22
|
prdsinvlem |
|- ( ( ph /\ a e. ( Base ` Y ) ) -> ( ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) e. ( Base ` Y ) /\ ( ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) ( +g ` Y ) a ) = ( 0g o. R ) ) ) |
24 |
23
|
simpld |
|- ( ( ph /\ a e. ( Base ` Y ) ) -> ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) e. ( Base ` Y ) ) |
25 |
23
|
simprd |
|- ( ( ph /\ a e. ( Base ` Y ) ) -> ( ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) ( +g ` Y ) a ) = ( 0g o. R ) ) |
26 |
5 6 11 12 24 25
|
isgrpd2 |
|- ( ph -> Y e. Grp ) |