| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsgrpd.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdsgrpd.i |  |-  ( ph -> I e. W ) | 
						
							| 3 |  | prdsgrpd.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prdsgrpd.r |  |-  ( ph -> R : I --> Grp ) | 
						
							| 5 |  | eqidd |  |-  ( ph -> ( Base ` Y ) = ( Base ` Y ) ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> ( +g ` Y ) = ( +g ` Y ) ) | 
						
							| 7 |  | grpmnd |  |-  ( a e. Grp -> a e. Mnd ) | 
						
							| 8 | 7 | ssriv |  |-  Grp C_ Mnd | 
						
							| 9 |  | fss |  |-  ( ( R : I --> Grp /\ Grp C_ Mnd ) -> R : I --> Mnd ) | 
						
							| 10 | 4 8 9 | sylancl |  |-  ( ph -> R : I --> Mnd ) | 
						
							| 11 | 1 2 3 10 | prds0g |  |-  ( ph -> ( 0g o. R ) = ( 0g ` Y ) ) | 
						
							| 12 | 1 2 3 10 | prdsmndd |  |-  ( ph -> Y e. Mnd ) | 
						
							| 13 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 14 |  | eqid |  |-  ( +g ` Y ) = ( +g ` Y ) | 
						
							| 15 | 3 | elexd |  |-  ( ph -> S e. _V ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ a e. ( Base ` Y ) ) -> S e. _V ) | 
						
							| 17 | 2 | elexd |  |-  ( ph -> I e. _V ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ a e. ( Base ` Y ) ) -> I e. _V ) | 
						
							| 19 | 4 | adantr |  |-  ( ( ph /\ a e. ( Base ` Y ) ) -> R : I --> Grp ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ a e. ( Base ` Y ) ) -> a e. ( Base ` Y ) ) | 
						
							| 21 |  | eqid |  |-  ( 0g o. R ) = ( 0g o. R ) | 
						
							| 22 |  | eqid |  |-  ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) = ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) | 
						
							| 23 | 1 13 14 16 18 19 20 21 22 | prdsinvlem |  |-  ( ( ph /\ a e. ( Base ` Y ) ) -> ( ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) e. ( Base ` Y ) /\ ( ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) ( +g ` Y ) a ) = ( 0g o. R ) ) ) | 
						
							| 24 | 23 | simpld |  |-  ( ( ph /\ a e. ( Base ` Y ) ) -> ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) e. ( Base ` Y ) ) | 
						
							| 25 | 23 | simprd |  |-  ( ( ph /\ a e. ( Base ` Y ) ) -> ( ( b e. I |-> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) ( +g ` Y ) a ) = ( 0g o. R ) ) | 
						
							| 26 | 5 6 11 12 24 25 | isgrpd2 |  |-  ( ph -> Y e. Grp ) |