| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsgrpd.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdsgrpd.i |  |-  ( ph -> I e. W ) | 
						
							| 3 |  | prdsgrpd.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prdsgrpd.r |  |-  ( ph -> R : I --> Grp ) | 
						
							| 5 |  | prdsinvgd.b |  |-  B = ( Base ` Y ) | 
						
							| 6 |  | prdsinvgd.n |  |-  N = ( invg ` Y ) | 
						
							| 7 |  | prdsinvgd.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | eqid |  |-  ( +g ` Y ) = ( +g ` Y ) | 
						
							| 9 | 3 | elexd |  |-  ( ph -> S e. _V ) | 
						
							| 10 | 2 | elexd |  |-  ( ph -> I e. _V ) | 
						
							| 11 |  | eqid |  |-  ( 0g o. R ) = ( 0g o. R ) | 
						
							| 12 |  | eqid |  |-  ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) | 
						
							| 13 | 1 5 8 9 10 4 7 11 12 | prdsinvlem |  |-  ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) e. B /\ ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g o. R ) ) ) | 
						
							| 14 | 13 | simprd |  |-  ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g o. R ) ) | 
						
							| 15 |  | grpmnd |  |-  ( a e. Grp -> a e. Mnd ) | 
						
							| 16 | 15 | ssriv |  |-  Grp C_ Mnd | 
						
							| 17 |  | fss |  |-  ( ( R : I --> Grp /\ Grp C_ Mnd ) -> R : I --> Mnd ) | 
						
							| 18 | 4 16 17 | sylancl |  |-  ( ph -> R : I --> Mnd ) | 
						
							| 19 | 1 2 3 18 | prds0g |  |-  ( ph -> ( 0g o. R ) = ( 0g ` Y ) ) | 
						
							| 20 | 14 19 | eqtrd |  |-  ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g ` Y ) ) | 
						
							| 21 | 1 2 3 4 | prdsgrpd |  |-  ( ph -> Y e. Grp ) | 
						
							| 22 | 13 | simpld |  |-  ( ph -> ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) e. B ) | 
						
							| 23 |  | eqid |  |-  ( 0g ` Y ) = ( 0g ` Y ) | 
						
							| 24 | 5 8 23 6 | grpinvid2 |  |-  ( ( Y e. Grp /\ X e. B /\ ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) e. B ) -> ( ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) <-> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g ` Y ) ) ) | 
						
							| 25 | 21 7 22 24 | syl3anc |  |-  ( ph -> ( ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) <-> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g ` Y ) ) ) | 
						
							| 26 | 20 25 | mpbird |  |-  ( ph -> ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ) |