Step |
Hyp |
Ref |
Expression |
1 |
|
prdsinvgd2.y |
|- Y = ( S Xs_ R ) |
2 |
|
prdsinvgd2.i |
|- ( ph -> I e. W ) |
3 |
|
prdsinvgd2.s |
|- ( ph -> S e. V ) |
4 |
|
prdsinvgd2.r |
|- ( ph -> R : I --> Grp ) |
5 |
|
prdsinvgd2.b |
|- B = ( Base ` Y ) |
6 |
|
prdsinvgd2.n |
|- N = ( invg ` Y ) |
7 |
|
prdsinvgd2.x |
|- ( ph -> X e. B ) |
8 |
|
prdsinvgd2.j |
|- ( ph -> J e. I ) |
9 |
1 2 3 4 5 6 7
|
prdsinvgd |
|- ( ph -> ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ) |
10 |
9
|
fveq1d |
|- ( ph -> ( ( N ` X ) ` J ) = ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ` J ) ) |
11 |
|
2fveq3 |
|- ( x = J -> ( invg ` ( R ` x ) ) = ( invg ` ( R ` J ) ) ) |
12 |
|
fveq2 |
|- ( x = J -> ( X ` x ) = ( X ` J ) ) |
13 |
11 12
|
fveq12d |
|- ( x = J -> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) ) |
14 |
|
eqid |
|- ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) |
15 |
|
fvex |
|- ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) e. _V |
16 |
13 14 15
|
fvmpt |
|- ( J e. I -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) ) |
17 |
8 16
|
syl |
|- ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) ) |
18 |
10 17
|
eqtrd |
|- ( ph -> ( ( N ` X ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) ) |