| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsbas.p |
|- P = ( S Xs_ R ) |
| 2 |
|
prdsbas.s |
|- ( ph -> S e. V ) |
| 3 |
|
prdsbas.r |
|- ( ph -> R e. W ) |
| 4 |
|
prdsbas.b |
|- B = ( Base ` P ) |
| 5 |
|
prdsbas.i |
|- ( ph -> dom R = I ) |
| 6 |
|
prdsle.l |
|- .<_ = ( le ` P ) |
| 7 |
1 2 3 4 5 6
|
prdsle |
|- ( ph -> .<_ = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 8 |
|
vex |
|- f e. _V |
| 9 |
|
vex |
|- g e. _V |
| 10 |
8 9
|
prss |
|- ( ( f e. B /\ g e. B ) <-> { f , g } C_ B ) |
| 11 |
10
|
anbi1i |
|- ( ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) <-> ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) |
| 12 |
11
|
opabbii |
|- { <. f , g >. | ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } |
| 13 |
|
opabssxp |
|- { <. f , g >. | ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } C_ ( B X. B ) |
| 14 |
12 13
|
eqsstrri |
|- { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } C_ ( B X. B ) |
| 15 |
7 14
|
eqsstrdi |
|- ( ph -> .<_ C_ ( B X. B ) ) |