| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsxms.y |
|- Y = ( S Xs_ R ) |
| 2 |
|
msxms |
|- ( x e. MetSp -> x e. *MetSp ) |
| 3 |
2
|
ssriv |
|- MetSp C_ *MetSp |
| 4 |
|
fss |
|- ( ( R : I --> MetSp /\ MetSp C_ *MetSp ) -> R : I --> *MetSp ) |
| 5 |
3 4
|
mpan2 |
|- ( R : I --> MetSp -> R : I --> *MetSp ) |
| 6 |
1
|
prdsxms |
|- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> Y e. *MetSp ) |
| 7 |
5 6
|
syl3an3 |
|- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> Y e. *MetSp ) |
| 8 |
|
simp1 |
|- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> S e. W ) |
| 9 |
|
simp2 |
|- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> I e. Fin ) |
| 10 |
|
eqid |
|- ( dist ` Y ) = ( dist ` Y ) |
| 11 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 12 |
|
simp3 |
|- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> R : I --> MetSp ) |
| 13 |
1 8 9 10 11 12
|
prdsmslem1 |
|- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> ( dist ` Y ) e. ( Met ` ( Base ` Y ) ) ) |
| 14 |
|
ssid |
|- ( Base ` Y ) C_ ( Base ` Y ) |
| 15 |
|
metres2 |
|- ( ( ( dist ` Y ) e. ( Met ` ( Base ` Y ) ) /\ ( Base ` Y ) C_ ( Base ` Y ) ) -> ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) e. ( Met ` ( Base ` Y ) ) ) |
| 16 |
13 14 15
|
sylancl |
|- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) e. ( Met ` ( Base ` Y ) ) ) |
| 17 |
|
eqid |
|- ( TopOpen ` Y ) = ( TopOpen ` Y ) |
| 18 |
|
eqid |
|- ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) = ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) |
| 19 |
17 11 18
|
isms |
|- ( Y e. MetSp <-> ( Y e. *MetSp /\ ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) e. ( Met ` ( Base ` Y ) ) ) ) |
| 20 |
7 16 19
|
sylanbrc |
|- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> Y e. MetSp ) |