Step |
Hyp |
Ref |
Expression |
1 |
|
prdsmulrcl.y |
|- Y = ( S Xs_ R ) |
2 |
|
prdsmulrcl.b |
|- B = ( Base ` Y ) |
3 |
|
prdsmulrcl.t |
|- .x. = ( .r ` Y ) |
4 |
|
prdsmulrcl.s |
|- ( ph -> S e. V ) |
5 |
|
prdsmulrcl.i |
|- ( ph -> I e. W ) |
6 |
|
prdsmulrcl.r |
|- ( ph -> R : I --> Ring ) |
7 |
|
prdsmulrcl.f |
|- ( ph -> F e. B ) |
8 |
|
prdsmulrcl.g |
|- ( ph -> G e. B ) |
9 |
6
|
ffnd |
|- ( ph -> R Fn I ) |
10 |
1 2 4 5 9 7 8 3
|
prdsmulrval |
|- ( ph -> ( F .x. G ) = ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ) |
11 |
6
|
ffvelrnda |
|- ( ( ph /\ x e. I ) -> ( R ` x ) e. Ring ) |
12 |
4
|
adantr |
|- ( ( ph /\ x e. I ) -> S e. V ) |
13 |
5
|
adantr |
|- ( ( ph /\ x e. I ) -> I e. W ) |
14 |
9
|
adantr |
|- ( ( ph /\ x e. I ) -> R Fn I ) |
15 |
7
|
adantr |
|- ( ( ph /\ x e. I ) -> F e. B ) |
16 |
|
simpr |
|- ( ( ph /\ x e. I ) -> x e. I ) |
17 |
1 2 12 13 14 15 16
|
prdsbasprj |
|- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( Base ` ( R ` x ) ) ) |
18 |
8
|
adantr |
|- ( ( ph /\ x e. I ) -> G e. B ) |
19 |
1 2 12 13 14 18 16
|
prdsbasprj |
|- ( ( ph /\ x e. I ) -> ( G ` x ) e. ( Base ` ( R ` x ) ) ) |
20 |
|
eqid |
|- ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) |
21 |
|
eqid |
|- ( .r ` ( R ` x ) ) = ( .r ` ( R ` x ) ) |
22 |
20 21
|
ringcl |
|- ( ( ( R ` x ) e. Ring /\ ( F ` x ) e. ( Base ` ( R ` x ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
23 |
11 17 19 22
|
syl3anc |
|- ( ( ph /\ x e. I ) -> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
24 |
23
|
ralrimiva |
|- ( ph -> A. x e. I ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
25 |
1 2 4 5 9
|
prdsbasmpt |
|- ( ph -> ( ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) e. B <-> A. x e. I ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) ) |
26 |
24 25
|
mpbird |
|- ( ph -> ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) e. B ) |
27 |
10 26
|
eqeltrd |
|- ( ph -> ( F .x. G ) e. B ) |