Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015) (Proof shortened by AV, 30-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prdsmulrcl.y | |- Y = ( S Xs_ R ) |
|
prdsmulrcl.b | |- B = ( Base ` Y ) |
||
prdsmulrcl.t | |- .x. = ( .r ` Y ) |
||
prdsmulrcl.s | |- ( ph -> S e. V ) |
||
prdsmulrcl.i | |- ( ph -> I e. W ) |
||
prdsmulrcl.r | |- ( ph -> R : I --> Ring ) |
||
prdsmulrcl.f | |- ( ph -> F e. B ) |
||
prdsmulrcl.g | |- ( ph -> G e. B ) |
||
Assertion | prdsmulrcl | |- ( ph -> ( F .x. G ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsmulrcl.y | |- Y = ( S Xs_ R ) |
|
2 | prdsmulrcl.b | |- B = ( Base ` Y ) |
|
3 | prdsmulrcl.t | |- .x. = ( .r ` Y ) |
|
4 | prdsmulrcl.s | |- ( ph -> S e. V ) |
|
5 | prdsmulrcl.i | |- ( ph -> I e. W ) |
|
6 | prdsmulrcl.r | |- ( ph -> R : I --> Ring ) |
|
7 | prdsmulrcl.f | |- ( ph -> F e. B ) |
|
8 | prdsmulrcl.g | |- ( ph -> G e. B ) |
|
9 | ringssrng | |- Ring C_ Rng |
|
10 | fss | |- ( ( R : I --> Ring /\ Ring C_ Rng ) -> R : I --> Rng ) |
|
11 | 6 9 10 | sylancl | |- ( ph -> R : I --> Rng ) |
12 | 1 2 3 4 5 11 7 8 | prdsmulrngcl | |- ( ph -> ( F .x. G ) e. B ) |