Metamath Proof Explorer


Theorem prdsmulrcl

Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015) (Proof shortened by AV, 30-Mar-2025)

Ref Expression
Hypotheses prdsmulrcl.y
|- Y = ( S Xs_ R )
prdsmulrcl.b
|- B = ( Base ` Y )
prdsmulrcl.t
|- .x. = ( .r ` Y )
prdsmulrcl.s
|- ( ph -> S e. V )
prdsmulrcl.i
|- ( ph -> I e. W )
prdsmulrcl.r
|- ( ph -> R : I --> Ring )
prdsmulrcl.f
|- ( ph -> F e. B )
prdsmulrcl.g
|- ( ph -> G e. B )
Assertion prdsmulrcl
|- ( ph -> ( F .x. G ) e. B )

Proof

Step Hyp Ref Expression
1 prdsmulrcl.y
 |-  Y = ( S Xs_ R )
2 prdsmulrcl.b
 |-  B = ( Base ` Y )
3 prdsmulrcl.t
 |-  .x. = ( .r ` Y )
4 prdsmulrcl.s
 |-  ( ph -> S e. V )
5 prdsmulrcl.i
 |-  ( ph -> I e. W )
6 prdsmulrcl.r
 |-  ( ph -> R : I --> Ring )
7 prdsmulrcl.f
 |-  ( ph -> F e. B )
8 prdsmulrcl.g
 |-  ( ph -> G e. B )
9 ringssrng
 |-  Ring C_ Rng
10 fss
 |-  ( ( R : I --> Ring /\ Ring C_ Rng ) -> R : I --> Rng )
11 6 9 10 sylancl
 |-  ( ph -> R : I --> Rng )
12 1 2 3 4 5 11 7 8 prdsmulrngcl
 |-  ( ph -> ( F .x. G ) e. B )