| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdsbasmpt.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | prdsbasmpt.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prdsbasmpt.i |  |-  ( ph -> I e. W ) | 
						
							| 5 |  | prdsbasmpt.r |  |-  ( ph -> R Fn I ) | 
						
							| 6 |  | prdsplusgval.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | prdsplusgval.g |  |-  ( ph -> G e. B ) | 
						
							| 8 |  | prdsmulrval.t |  |-  .x. = ( .r ` Y ) | 
						
							| 9 |  | prdsmulrfval.j |  |-  ( ph -> J e. I ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 | prdsmulrval |  |-  ( ph -> ( F .x. G ) = ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ) | 
						
							| 11 | 10 | fveq1d |  |-  ( ph -> ( ( F .x. G ) ` J ) = ( ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ` J ) ) | 
						
							| 12 |  | 2fveq3 |  |-  ( x = J -> ( .r ` ( R ` x ) ) = ( .r ` ( R ` J ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( x = J -> ( F ` x ) = ( F ` J ) ) | 
						
							| 14 |  | fveq2 |  |-  ( x = J -> ( G ` x ) = ( G ` J ) ) | 
						
							| 15 | 12 13 14 | oveq123d |  |-  ( x = J -> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) = ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) ) | 
						
							| 16 |  | eqid |  |-  ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) | 
						
							| 17 |  | ovex |  |-  ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) e. _V | 
						
							| 18 | 15 16 17 | fvmpt |  |-  ( J e. I -> ( ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ` J ) = ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) ) | 
						
							| 19 | 9 18 | syl |  |-  ( ph -> ( ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ` J ) = ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) ) | 
						
							| 20 | 11 19 | eqtrd |  |-  ( ph -> ( ( F .x. G ) ` J ) = ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) ) |