| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsplusgsgrpcl.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdsplusgsgrpcl.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | prdsplusgsgrpcl.p |  |-  .+ = ( +g ` Y ) | 
						
							| 4 |  | prdsplusgsgrpcl.s |  |-  ( ph -> S e. V ) | 
						
							| 5 |  | prdsplusgsgrpcl.i |  |-  ( ph -> I e. W ) | 
						
							| 6 |  | prdsplusgsgrpcl.r |  |-  ( ph -> R : I --> Smgrp ) | 
						
							| 7 |  | prdsplusgsgrpcl.f |  |-  ( ph -> F e. B ) | 
						
							| 8 |  | prdsplusgsgrpcl.g |  |-  ( ph -> G e. B ) | 
						
							| 9 | 6 | ffnd |  |-  ( ph -> R Fn I ) | 
						
							| 10 | 1 2 4 5 9 7 8 3 | prdsplusgval |  |-  ( ph -> ( F .+ G ) = ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) ) | 
						
							| 11 | 6 | ffvelcdmda |  |-  ( ( ph /\ x e. I ) -> ( R ` x ) e. Smgrp ) | 
						
							| 12 | 4 | adantr |  |-  ( ( ph /\ x e. I ) -> S e. V ) | 
						
							| 13 | 5 | adantr |  |-  ( ( ph /\ x e. I ) -> I e. W ) | 
						
							| 14 | 9 | adantr |  |-  ( ( ph /\ x e. I ) -> R Fn I ) | 
						
							| 15 | 7 | adantr |  |-  ( ( ph /\ x e. I ) -> F e. B ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ x e. I ) -> x e. I ) | 
						
							| 17 | 1 2 12 13 14 15 16 | prdsbasprj |  |-  ( ( ph /\ x e. I ) -> ( F ` x ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 18 | 8 | adantr |  |-  ( ( ph /\ x e. I ) -> G e. B ) | 
						
							| 19 | 1 2 12 13 14 18 16 | prdsbasprj |  |-  ( ( ph /\ x e. I ) -> ( G ` x ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 20 |  | eqid |  |-  ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) | 
						
							| 21 |  | eqid |  |-  ( +g ` ( R ` x ) ) = ( +g ` ( R ` x ) ) | 
						
							| 22 | 20 21 | sgrpcl |  |-  ( ( ( R ` x ) e. Smgrp /\ ( F ` x ) e. ( Base ` ( R ` x ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 23 | 11 17 19 22 | syl3anc |  |-  ( ( ph /\ x e. I ) -> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 24 | 23 | ralrimiva |  |-  ( ph -> A. x e. I ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 25 | 1 2 4 5 9 | prdsbasmpt |  |-  ( ph -> ( ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) e. B <-> A. x e. I ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) ) | 
						
							| 26 | 24 25 | mpbird |  |-  ( ph -> ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) e. B ) | 
						
							| 27 | 10 26 | eqeltrd |  |-  ( ph -> ( F .+ G ) e. B ) |