| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdsbasmpt.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | prdsbasmpt.s |  |-  ( ph -> S e. V ) | 
						
							| 4 |  | prdsbasmpt.i |  |-  ( ph -> I e. W ) | 
						
							| 5 |  | prdsbasmpt.r |  |-  ( ph -> R Fn I ) | 
						
							| 6 |  | prdsplusgval.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | prdsplusgval.g |  |-  ( ph -> G e. B ) | 
						
							| 8 |  | prdsplusgval.p |  |-  .+ = ( +g ` Y ) | 
						
							| 9 |  | fnex |  |-  ( ( R Fn I /\ I e. W ) -> R e. _V ) | 
						
							| 10 | 5 4 9 | syl2anc |  |-  ( ph -> R e. _V ) | 
						
							| 11 | 5 | fndmd |  |-  ( ph -> dom R = I ) | 
						
							| 12 | 1 3 10 2 11 8 | prdsplusg |  |-  ( ph -> .+ = ( y e. B , z e. B |-> ( x e. I |-> ( ( y ` x ) ( +g ` ( R ` x ) ) ( z ` x ) ) ) ) ) | 
						
							| 13 |  | fveq1 |  |-  ( y = F -> ( y ` x ) = ( F ` x ) ) | 
						
							| 14 |  | fveq1 |  |-  ( z = G -> ( z ` x ) = ( G ` x ) ) | 
						
							| 15 | 13 14 | oveqan12d |  |-  ( ( y = F /\ z = G ) -> ( ( y ` x ) ( +g ` ( R ` x ) ) ( z ` x ) ) = ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ ( y = F /\ z = G ) ) -> ( ( y ` x ) ( +g ` ( R ` x ) ) ( z ` x ) ) = ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) | 
						
							| 17 | 16 | mpteq2dv |  |-  ( ( ph /\ ( y = F /\ z = G ) ) -> ( x e. I |-> ( ( y ` x ) ( +g ` ( R ` x ) ) ( z ` x ) ) ) = ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) ) | 
						
							| 18 | 4 | mptexd |  |-  ( ph -> ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) e. _V ) | 
						
							| 19 | 12 17 6 7 18 | ovmpod |  |-  ( ph -> ( F .+ G ) = ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) ) |