| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdstopn.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdstopn.s |  |-  ( ph -> S e. V ) | 
						
							| 3 |  | prdstopn.i |  |-  ( ph -> I e. W ) | 
						
							| 4 |  | prdstps.r |  |-  ( ph -> R : I --> TopSp ) | 
						
							| 5 | 4 | ffvelcdmda |  |-  ( ( ph /\ x e. I ) -> ( R ` x ) e. TopSp ) | 
						
							| 6 |  | eqid |  |-  ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) | 
						
							| 7 |  | eqid |  |-  ( TopOpen ` ( R ` x ) ) = ( TopOpen ` ( R ` x ) ) | 
						
							| 8 | 6 7 | istps |  |-  ( ( R ` x ) e. TopSp <-> ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) | 
						
							| 9 | 5 8 | sylib |  |-  ( ( ph /\ x e. I ) -> ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) | 
						
							| 10 | 9 | ralrimiva |  |-  ( ph -> A. x e. I ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) | 
						
							| 11 |  | eqid |  |-  ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) | 
						
							| 12 | 11 | pttopon |  |-  ( ( I e. W /\ A. x e. I ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) -> ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) e. ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) ) | 
						
							| 13 | 3 10 12 | syl2anc |  |-  ( ph -> ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) e. ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) ) | 
						
							| 14 | 4 3 | fexd |  |-  ( ph -> R e. _V ) | 
						
							| 15 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 16 | 4 | fdmd |  |-  ( ph -> dom R = I ) | 
						
							| 17 |  | eqid |  |-  ( TopSet ` Y ) = ( TopSet ` Y ) | 
						
							| 18 | 1 2 14 15 16 17 | prdstset |  |-  ( ph -> ( TopSet ` Y ) = ( Xt_ ` ( TopOpen o. R ) ) ) | 
						
							| 19 |  | topnfn |  |-  TopOpen Fn _V | 
						
							| 20 |  | dffn2 |  |-  ( TopOpen Fn _V <-> TopOpen : _V --> _V ) | 
						
							| 21 | 19 20 | mpbi |  |-  TopOpen : _V --> _V | 
						
							| 22 |  | ssv |  |-  TopSp C_ _V | 
						
							| 23 |  | fss |  |-  ( ( R : I --> TopSp /\ TopSp C_ _V ) -> R : I --> _V ) | 
						
							| 24 | 4 22 23 | sylancl |  |-  ( ph -> R : I --> _V ) | 
						
							| 25 |  | fcompt |  |-  ( ( TopOpen : _V --> _V /\ R : I --> _V ) -> ( TopOpen o. R ) = ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) | 
						
							| 26 | 21 24 25 | sylancr |  |-  ( ph -> ( TopOpen o. R ) = ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( ph -> ( Xt_ ` ( TopOpen o. R ) ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) ) | 
						
							| 28 | 18 27 | eqtrd |  |-  ( ph -> ( TopSet ` Y ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) ) | 
						
							| 29 | 1 2 14 15 16 | prdsbas |  |-  ( ph -> ( Base ` Y ) = X_ x e. I ( Base ` ( R ` x ) ) ) | 
						
							| 30 | 29 | fveq2d |  |-  ( ph -> ( TopOn ` ( Base ` Y ) ) = ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) ) | 
						
							| 31 | 13 28 30 | 3eltr4d |  |-  ( ph -> ( TopSet ` Y ) e. ( TopOn ` ( Base ` Y ) ) ) | 
						
							| 32 | 15 17 | tsettps |  |-  ( ( TopSet ` Y ) e. ( TopOn ` ( Base ` Y ) ) -> Y e. TopSp ) | 
						
							| 33 | 31 32 | syl |  |-  ( ph -> Y e. TopSp ) |