Metamath Proof Explorer


Theorem prdstps

Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdstopn.y
|- Y = ( S Xs_ R )
prdstopn.s
|- ( ph -> S e. V )
prdstopn.i
|- ( ph -> I e. W )
prdstps.r
|- ( ph -> R : I --> TopSp )
Assertion prdstps
|- ( ph -> Y e. TopSp )

Proof

Step Hyp Ref Expression
1 prdstopn.y
 |-  Y = ( S Xs_ R )
2 prdstopn.s
 |-  ( ph -> S e. V )
3 prdstopn.i
 |-  ( ph -> I e. W )
4 prdstps.r
 |-  ( ph -> R : I --> TopSp )
5 4 ffvelrnda
 |-  ( ( ph /\ x e. I ) -> ( R ` x ) e. TopSp )
6 eqid
 |-  ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) )
7 eqid
 |-  ( TopOpen ` ( R ` x ) ) = ( TopOpen ` ( R ` x ) )
8 6 7 istps
 |-  ( ( R ` x ) e. TopSp <-> ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) )
9 5 8 sylib
 |-  ( ( ph /\ x e. I ) -> ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) )
10 9 ralrimiva
 |-  ( ph -> A. x e. I ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) )
11 eqid
 |-  ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) )
12 11 pttopon
 |-  ( ( I e. W /\ A. x e. I ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) -> ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) e. ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) )
13 3 10 12 syl2anc
 |-  ( ph -> ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) e. ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) )
14 4 3 fexd
 |-  ( ph -> R e. _V )
15 eqid
 |-  ( Base ` Y ) = ( Base ` Y )
16 4 fdmd
 |-  ( ph -> dom R = I )
17 eqid
 |-  ( TopSet ` Y ) = ( TopSet ` Y )
18 1 2 14 15 16 17 prdstset
 |-  ( ph -> ( TopSet ` Y ) = ( Xt_ ` ( TopOpen o. R ) ) )
19 topnfn
 |-  TopOpen Fn _V
20 dffn2
 |-  ( TopOpen Fn _V <-> TopOpen : _V --> _V )
21 19 20 mpbi
 |-  TopOpen : _V --> _V
22 ssv
 |-  TopSp C_ _V
23 fss
 |-  ( ( R : I --> TopSp /\ TopSp C_ _V ) -> R : I --> _V )
24 4 22 23 sylancl
 |-  ( ph -> R : I --> _V )
25 fcompt
 |-  ( ( TopOpen : _V --> _V /\ R : I --> _V ) -> ( TopOpen o. R ) = ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) )
26 21 24 25 sylancr
 |-  ( ph -> ( TopOpen o. R ) = ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) )
27 26 fveq2d
 |-  ( ph -> ( Xt_ ` ( TopOpen o. R ) ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) )
28 18 27 eqtrd
 |-  ( ph -> ( TopSet ` Y ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) )
29 1 2 14 15 16 prdsbas
 |-  ( ph -> ( Base ` Y ) = X_ x e. I ( Base ` ( R ` x ) ) )
30 29 fveq2d
 |-  ( ph -> ( TopOn ` ( Base ` Y ) ) = ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) )
31 13 28 30 3eltr4d
 |-  ( ph -> ( TopSet ` Y ) e. ( TopOn ` ( Base ` Y ) ) )
32 15 17 tsettps
 |-  ( ( TopSet ` Y ) e. ( TopOn ` ( Base ` Y ) ) -> Y e. TopSp )
33 31 32 syl
 |-  ( ph -> Y e. TopSp )