Step |
Hyp |
Ref |
Expression |
1 |
|
prdstopn.y |
|- Y = ( S Xs_ R ) |
2 |
|
prdstopn.s |
|- ( ph -> S e. V ) |
3 |
|
prdstopn.i |
|- ( ph -> I e. W ) |
4 |
|
prdstps.r |
|- ( ph -> R : I --> TopSp ) |
5 |
4
|
ffvelrnda |
|- ( ( ph /\ x e. I ) -> ( R ` x ) e. TopSp ) |
6 |
|
eqid |
|- ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) |
7 |
|
eqid |
|- ( TopOpen ` ( R ` x ) ) = ( TopOpen ` ( R ` x ) ) |
8 |
6 7
|
istps |
|- ( ( R ` x ) e. TopSp <-> ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) |
9 |
5 8
|
sylib |
|- ( ( ph /\ x e. I ) -> ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) |
10 |
9
|
ralrimiva |
|- ( ph -> A. x e. I ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) |
11 |
|
eqid |
|- ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) |
12 |
11
|
pttopon |
|- ( ( I e. W /\ A. x e. I ( TopOpen ` ( R ` x ) ) e. ( TopOn ` ( Base ` ( R ` x ) ) ) ) -> ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) e. ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) ) |
13 |
3 10 12
|
syl2anc |
|- ( ph -> ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) e. ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) ) |
14 |
4 3
|
fexd |
|- ( ph -> R e. _V ) |
15 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
16 |
4
|
fdmd |
|- ( ph -> dom R = I ) |
17 |
|
eqid |
|- ( TopSet ` Y ) = ( TopSet ` Y ) |
18 |
1 2 14 15 16 17
|
prdstset |
|- ( ph -> ( TopSet ` Y ) = ( Xt_ ` ( TopOpen o. R ) ) ) |
19 |
|
topnfn |
|- TopOpen Fn _V |
20 |
|
dffn2 |
|- ( TopOpen Fn _V <-> TopOpen : _V --> _V ) |
21 |
19 20
|
mpbi |
|- TopOpen : _V --> _V |
22 |
|
ssv |
|- TopSp C_ _V |
23 |
|
fss |
|- ( ( R : I --> TopSp /\ TopSp C_ _V ) -> R : I --> _V ) |
24 |
4 22 23
|
sylancl |
|- ( ph -> R : I --> _V ) |
25 |
|
fcompt |
|- ( ( TopOpen : _V --> _V /\ R : I --> _V ) -> ( TopOpen o. R ) = ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) |
26 |
21 24 25
|
sylancr |
|- ( ph -> ( TopOpen o. R ) = ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) |
27 |
26
|
fveq2d |
|- ( ph -> ( Xt_ ` ( TopOpen o. R ) ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) ) |
28 |
18 27
|
eqtrd |
|- ( ph -> ( TopSet ` Y ) = ( Xt_ ` ( x e. I |-> ( TopOpen ` ( R ` x ) ) ) ) ) |
29 |
1 2 14 15 16
|
prdsbas |
|- ( ph -> ( Base ` Y ) = X_ x e. I ( Base ` ( R ` x ) ) ) |
30 |
29
|
fveq2d |
|- ( ph -> ( TopOn ` ( Base ` Y ) ) = ( TopOn ` X_ x e. I ( Base ` ( R ` x ) ) ) ) |
31 |
13 28 30
|
3eltr4d |
|- ( ph -> ( TopSet ` Y ) e. ( TopOn ` ( Base ` Y ) ) ) |
32 |
15 17
|
tsettps |
|- ( ( TopSet ` Y ) e. ( TopOn ` ( Base ` Y ) ) -> Y e. TopSp ) |
33 |
31 32
|
syl |
|- ( ph -> Y e. TopSp ) |