| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsval.p |
|- P = ( S Xs_ R ) |
| 2 |
|
prdsval.k |
|- K = ( Base ` S ) |
| 3 |
|
prdsval.i |
|- ( ph -> dom R = I ) |
| 4 |
|
prdsval.b |
|- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
| 5 |
|
prdsval.a |
|- ( ph -> .+ = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 6 |
|
prdsval.t |
|- ( ph -> .X. = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 7 |
|
prdsval.m |
|- ( ph -> .x. = ( f e. K , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 8 |
|
prdsval.j |
|- ( ph -> ., = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) ) |
| 9 |
|
prdsval.o |
|- ( ph -> O = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 10 |
|
prdsval.l |
|- ( ph -> .<_ = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 11 |
|
prdsval.d |
|- ( ph -> D = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
| 12 |
|
prdsval.h |
|- ( ph -> H = ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 13 |
|
prdsval.x |
|- ( ph -> .xb = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) ) |
| 14 |
|
prdsval.s |
|- ( ph -> S e. W ) |
| 15 |
|
prdsval.r |
|- ( ph -> R e. Z ) |
| 16 |
|
df-prds |
|- Xs_ = ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) ) |
| 17 |
16
|
a1i |
|- ( ph -> Xs_ = ( s e. _V , r e. _V |-> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) ) ) |
| 18 |
|
vex |
|- r e. _V |
| 19 |
18
|
rnex |
|- ran r e. _V |
| 20 |
19
|
uniex |
|- U. ran r e. _V |
| 21 |
20
|
rnex |
|- ran U. ran r e. _V |
| 22 |
21
|
uniex |
|- U. ran U. ran r e. _V |
| 23 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 24 |
23
|
strfvss |
|- ( Base ` ( r ` x ) ) C_ U. ran ( r ` x ) |
| 25 |
|
fvssunirn |
|- ( r ` x ) C_ U. ran r |
| 26 |
|
rnss |
|- ( ( r ` x ) C_ U. ran r -> ran ( r ` x ) C_ ran U. ran r ) |
| 27 |
|
uniss |
|- ( ran ( r ` x ) C_ ran U. ran r -> U. ran ( r ` x ) C_ U. ran U. ran r ) |
| 28 |
25 26 27
|
mp2b |
|- U. ran ( r ` x ) C_ U. ran U. ran r |
| 29 |
24 28
|
sstri |
|- ( Base ` ( r ` x ) ) C_ U. ran U. ran r |
| 30 |
29
|
rgenw |
|- A. x e. dom r ( Base ` ( r ` x ) ) C_ U. ran U. ran r |
| 31 |
|
iunss |
|- ( U_ x e. dom r ( Base ` ( r ` x ) ) C_ U. ran U. ran r <-> A. x e. dom r ( Base ` ( r ` x ) ) C_ U. ran U. ran r ) |
| 32 |
30 31
|
mpbir |
|- U_ x e. dom r ( Base ` ( r ` x ) ) C_ U. ran U. ran r |
| 33 |
22 32
|
ssexi |
|- U_ x e. dom r ( Base ` ( r ` x ) ) e. _V |
| 34 |
|
ixpssmap2g |
|- ( U_ x e. dom r ( Base ` ( r ` x ) ) e. _V -> X_ x e. dom r ( Base ` ( r ` x ) ) C_ ( U_ x e. dom r ( Base ` ( r ` x ) ) ^m dom r ) ) |
| 35 |
33 34
|
ax-mp |
|- X_ x e. dom r ( Base ` ( r ` x ) ) C_ ( U_ x e. dom r ( Base ` ( r ` x ) ) ^m dom r ) |
| 36 |
|
ovex |
|- ( U_ x e. dom r ( Base ` ( r ` x ) ) ^m dom r ) e. _V |
| 37 |
36
|
ssex |
|- ( X_ x e. dom r ( Base ` ( r ` x ) ) C_ ( U_ x e. dom r ( Base ` ( r ` x ) ) ^m dom r ) -> X_ x e. dom r ( Base ` ( r ` x ) ) e. _V ) |
| 38 |
35 37
|
mp1i |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> X_ x e. dom r ( Base ` ( r ` x ) ) e. _V ) |
| 39 |
|
simpr |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> r = R ) |
| 40 |
39
|
fveq1d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( r ` x ) = ( R ` x ) ) |
| 41 |
40
|
fveq2d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( Base ` ( r ` x ) ) = ( Base ` ( R ` x ) ) ) |
| 42 |
41
|
ixpeq2dv |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> X_ x e. I ( Base ` ( r ` x ) ) = X_ x e. I ( Base ` ( R ` x ) ) ) |
| 43 |
39
|
dmeqd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> dom r = dom R ) |
| 44 |
3
|
ad2antrr |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> dom R = I ) |
| 45 |
43 44
|
eqtrd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> dom r = I ) |
| 46 |
45
|
ixpeq1d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> X_ x e. dom r ( Base ` ( r ` x ) ) = X_ x e. I ( Base ` ( r ` x ) ) ) |
| 47 |
4
|
ad2antrr |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
| 48 |
42 46 47
|
3eqtr4d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> X_ x e. dom r ( Base ` ( r ` x ) ) = B ) |
| 49 |
|
prdsvallem |
|- ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) e. _V |
| 50 |
49
|
a1i |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) e. _V ) |
| 51 |
|
simpr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> v = B ) |
| 52 |
45
|
adantr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> dom r = I ) |
| 53 |
52
|
ixpeq1d |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) = X_ x e. I ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) |
| 54 |
40
|
fveq2d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( Hom ` ( r ` x ) ) = ( Hom ` ( R ` x ) ) ) |
| 55 |
54
|
oveqd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) = ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) |
| 56 |
55
|
ixpeq2dv |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> X_ x e. I ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) = X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) |
| 57 |
56
|
adantr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> X_ x e. I ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) = X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) |
| 58 |
53 57
|
eqtrd |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) = X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) |
| 59 |
51 51 58
|
mpoeq123dv |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) = ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 60 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> H = ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 61 |
59 60
|
eqtr4d |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) = H ) |
| 62 |
|
simplr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> v = B ) |
| 63 |
62
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( Base ` ndx ) , v >. = <. ( Base ` ndx ) , B >. ) |
| 64 |
40
|
fveq2d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( +g ` ( r ` x ) ) = ( +g ` ( R ` x ) ) ) |
| 65 |
64
|
oveqd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) = ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) |
| 66 |
45 65
|
mpteq12dv |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 67 |
66
|
adantr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 68 |
51 51 67
|
mpoeq123dv |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 69 |
68
|
adantr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 70 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> .+ = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 71 |
69 70
|
eqtr4d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) = .+ ) |
| 72 |
71
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. = <. ( +g ` ndx ) , .+ >. ) |
| 73 |
40
|
fveq2d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( .r ` ( r ` x ) ) = ( .r ` ( R ` x ) ) ) |
| 74 |
73
|
oveqd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) = ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) |
| 75 |
45 74
|
mpteq12dv |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 76 |
75
|
adantr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 77 |
51 51 76
|
mpoeq123dv |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 78 |
77
|
adantr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 79 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> .X. = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 80 |
78 79
|
eqtr4d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) = .X. ) |
| 81 |
80
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. = <. ( .r ` ndx ) , .X. >. ) |
| 82 |
63 72 81
|
tpeq123d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } ) |
| 83 |
|
simp-4r |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> s = S ) |
| 84 |
83
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( Scalar ` ndx ) , s >. = <. ( Scalar ` ndx ) , S >. ) |
| 85 |
|
simpllr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> s = S ) |
| 86 |
85
|
fveq2d |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( Base ` s ) = ( Base ` S ) ) |
| 87 |
86 2
|
eqtr4di |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( Base ` s ) = K ) |
| 88 |
40
|
fveq2d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( .s ` ( r ` x ) ) = ( .s ` ( R ` x ) ) ) |
| 89 |
88
|
oveqd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) = ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) |
| 90 |
45 89
|
mpteq12dv |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 91 |
90
|
adantr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 92 |
87 51 91
|
mpoeq123dv |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. K , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 93 |
92
|
adantr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) = ( f e. K , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 94 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> .x. = ( f e. K , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 95 |
93 94
|
eqtr4d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) = .x. ) |
| 96 |
95
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. = <. ( .s ` ndx ) , .x. >. ) |
| 97 |
40
|
fveq2d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( .i ` ( r ` x ) ) = ( .i ` ( R ` x ) ) ) |
| 98 |
97
|
oveqd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) = ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) |
| 99 |
45 98
|
mpteq12dv |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 100 |
99
|
adantr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 101 |
85 100
|
oveq12d |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) = ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
| 102 |
51 51 101
|
mpoeq123dv |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) ) |
| 103 |
102
|
adantr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) ) |
| 104 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ., = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) ) |
| 105 |
103 104
|
eqtr4d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) = ., ) |
| 106 |
105
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. = <. ( .i ` ndx ) , ., >. ) |
| 107 |
84 96 106
|
tpeq123d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } = { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) |
| 108 |
82 107
|
uneq12d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
| 109 |
|
simpllr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> r = R ) |
| 110 |
109
|
coeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( TopOpen o. r ) = ( TopOpen o. R ) ) |
| 111 |
110
|
fveq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( Xt_ ` ( TopOpen o. r ) ) = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 112 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> O = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 113 |
111 112
|
eqtr4d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( Xt_ ` ( TopOpen o. r ) ) = O ) |
| 114 |
113
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. = <. ( TopSet ` ndx ) , O >. ) |
| 115 |
51
|
sseq2d |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( { f , g } C_ v <-> { f , g } C_ B ) ) |
| 116 |
40
|
fveq2d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( le ` ( r ` x ) ) = ( le ` ( R ` x ) ) ) |
| 117 |
116
|
breqd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) <-> ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) |
| 118 |
45 117
|
raleqbidv |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) <-> A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) |
| 119 |
118
|
adantr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) <-> A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) |
| 120 |
115 119
|
anbi12d |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) <-> ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 121 |
120
|
opabbidv |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 122 |
121
|
adantr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 123 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> .<_ = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 124 |
122 123
|
eqtr4d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } = .<_ ) |
| 125 |
124
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. = <. ( le ` ndx ) , .<_ >. ) |
| 126 |
40
|
fveq2d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( dist ` ( r ` x ) ) = ( dist ` ( R ` x ) ) ) |
| 127 |
126
|
oveqd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) = ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) |
| 128 |
45 127
|
mpteq12dv |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 129 |
128
|
adantr |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 130 |
129
|
rneqd |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) = ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) ) |
| 131 |
130
|
uneq1d |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) = ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) ) |
| 132 |
131
|
supeq1d |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 133 |
51 51 132
|
mpoeq123dv |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
| 134 |
133
|
adantr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
| 135 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> D = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
| 136 |
134 135
|
eqtr4d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) = D ) |
| 137 |
136
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. = <. ( dist ` ndx ) , D >. ) |
| 138 |
114 125 137
|
tpeq123d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } = { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) |
| 139 |
|
simpr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> h = H ) |
| 140 |
139
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( Hom ` ndx ) , h >. = <. ( Hom ` ndx ) , H >. ) |
| 141 |
62
|
sqxpeqd |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( v X. v ) = ( B X. B ) ) |
| 142 |
139
|
oveqd |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( ( 2nd ` a ) h c ) = ( ( 2nd ` a ) H c ) ) |
| 143 |
139
|
fveq1d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( h ` a ) = ( H ` a ) ) |
| 144 |
40
|
fveq2d |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( comp ` ( r ` x ) ) = ( comp ` ( R ` x ) ) ) |
| 145 |
144
|
oveqd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) = ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ) |
| 146 |
145
|
oveqd |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) = ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) |
| 147 |
45 146
|
mpteq12dv |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) = ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) |
| 148 |
147
|
ad2antrr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) = ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) |
| 149 |
142 143 148
|
mpoeq123dv |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) = ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) |
| 150 |
141 62 149
|
mpoeq123dv |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) ) |
| 151 |
13
|
ad4antr |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> .xb = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) ) |
| 152 |
150 151
|
eqtr4d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) = .xb ) |
| 153 |
152
|
opeq2d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. = <. ( comp ` ndx ) , .xb >. ) |
| 154 |
140 153
|
preq12d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } = { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) |
| 155 |
138 154
|
uneq12d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) = ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) |
| 156 |
108 155
|
uneq12d |
|- ( ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) /\ h = H ) -> ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| 157 |
50 61 156
|
csbied2 |
|- ( ( ( ( ph /\ s = S ) /\ r = R ) /\ v = B ) -> [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| 158 |
38 48 157
|
csbied2 |
|- ( ( ( ph /\ s = S ) /\ r = R ) -> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| 159 |
158
|
anasss |
|- ( ( ph /\ ( s = S /\ r = R ) ) -> [_ X_ x e. dom r ( Base ` ( r ` x ) ) / v ]_ [_ ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) / h ]_ ( ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( +g ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .r ` ndx ) , ( f e. v , g e. v |-> ( x e. dom r |-> ( ( f ` x ) ( .r ` ( r ` x ) ) ( g ` x ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , s >. , <. ( .s ` ndx ) , ( f e. ( Base ` s ) , g e. v |-> ( x e. dom r |-> ( f ( .s ` ( r ` x ) ) ( g ` x ) ) ) ) >. , <. ( .i ` ndx ) , ( f e. v , g e. v |-> ( s gsum ( x e. dom r |-> ( ( f ` x ) ( .i ` ( r ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( Xt_ ` ( TopOpen o. r ) ) >. , <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ v /\ A. x e. dom r ( f ` x ) ( le ` ( r ` x ) ) ( g ` x ) ) } >. , <. ( dist ` ndx ) , ( f e. v , g e. v |-> sup ( ( ran ( x e. dom r |-> ( ( f ` x ) ( dist ` ( r ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) >. } u. { <. ( Hom ` ndx ) , h >. , <. ( comp ` ndx ) , ( a e. ( v X. v ) , c e. v |-> ( d e. ( ( 2nd ` a ) h c ) , e e. ( h ` a ) |-> ( x e. dom r |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( r ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| 160 |
14
|
elexd |
|- ( ph -> S e. _V ) |
| 161 |
15
|
elexd |
|- ( ph -> R e. _V ) |
| 162 |
|
tpex |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } e. _V |
| 163 |
|
tpex |
|- { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } e. _V |
| 164 |
162 163
|
unex |
|- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) e. _V |
| 165 |
|
tpex |
|- { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } e. _V |
| 166 |
|
prex |
|- { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } e. _V |
| 167 |
165 166
|
unex |
|- ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) e. _V |
| 168 |
164 167
|
unex |
|- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) e. _V |
| 169 |
168
|
a1i |
|- ( ph -> ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) e. _V ) |
| 170 |
17 159 160 161 169
|
ovmpod |
|- ( ph -> ( S Xs_ R ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |
| 171 |
1 170
|
eqtrid |
|- ( ph -> P = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) ) |