| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- v e. _V |
| 2 |
|
ovex |
|- ( U. ran U. ran U. ran r ^m dom r ) e. _V |
| 3 |
2
|
pwex |
|- ~P ( U. ran U. ran U. ran r ^m dom r ) e. _V |
| 4 |
|
ovssunirn |
|- ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ U. ran ( Hom ` ( r ` x ) ) |
| 5 |
|
homid |
|- Hom = Slot ( Hom ` ndx ) |
| 6 |
5
|
strfvss |
|- ( Hom ` ( r ` x ) ) C_ U. ran ( r ` x ) |
| 7 |
|
fvssunirn |
|- ( r ` x ) C_ U. ran r |
| 8 |
|
rnss |
|- ( ( r ` x ) C_ U. ran r -> ran ( r ` x ) C_ ran U. ran r ) |
| 9 |
|
uniss |
|- ( ran ( r ` x ) C_ ran U. ran r -> U. ran ( r ` x ) C_ U. ran U. ran r ) |
| 10 |
7 8 9
|
mp2b |
|- U. ran ( r ` x ) C_ U. ran U. ran r |
| 11 |
6 10
|
sstri |
|- ( Hom ` ( r ` x ) ) C_ U. ran U. ran r |
| 12 |
|
rnss |
|- ( ( Hom ` ( r ` x ) ) C_ U. ran U. ran r -> ran ( Hom ` ( r ` x ) ) C_ ran U. ran U. ran r ) |
| 13 |
|
uniss |
|- ( ran ( Hom ` ( r ` x ) ) C_ ran U. ran U. ran r -> U. ran ( Hom ` ( r ` x ) ) C_ U. ran U. ran U. ran r ) |
| 14 |
11 12 13
|
mp2b |
|- U. ran ( Hom ` ( r ` x ) ) C_ U. ran U. ran U. ran r |
| 15 |
4 14
|
sstri |
|- ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ U. ran U. ran U. ran r |
| 16 |
15
|
rgenw |
|- A. x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ U. ran U. ran U. ran r |
| 17 |
|
ss2ixp |
|- ( A. x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ U. ran U. ran U. ran r -> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ X_ x e. dom r U. ran U. ran U. ran r ) |
| 18 |
16 17
|
ax-mp |
|- X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ X_ x e. dom r U. ran U. ran U. ran r |
| 19 |
|
vex |
|- r e. _V |
| 20 |
19
|
dmex |
|- dom r e. _V |
| 21 |
19
|
rnex |
|- ran r e. _V |
| 22 |
21
|
uniex |
|- U. ran r e. _V |
| 23 |
22
|
rnex |
|- ran U. ran r e. _V |
| 24 |
23
|
uniex |
|- U. ran U. ran r e. _V |
| 25 |
24
|
rnex |
|- ran U. ran U. ran r e. _V |
| 26 |
25
|
uniex |
|- U. ran U. ran U. ran r e. _V |
| 27 |
20 26
|
ixpconst |
|- X_ x e. dom r U. ran U. ran U. ran r = ( U. ran U. ran U. ran r ^m dom r ) |
| 28 |
18 27
|
sseqtri |
|- X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) C_ ( U. ran U. ran U. ran r ^m dom r ) |
| 29 |
2 28
|
elpwi2 |
|- X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) e. ~P ( U. ran U. ran U. ran r ^m dom r ) |
| 30 |
29
|
rgen2w |
|- A. f e. v A. g e. v X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) e. ~P ( U. ran U. ran U. ran r ^m dom r ) |
| 31 |
1 1 3 30
|
mpoexw |
|- ( f e. v , g e. v |-> X_ x e. dom r ( ( f ` x ) ( Hom ` ( r ` x ) ) ( g ` x ) ) ) e. _V |