Step |
Hyp |
Ref |
Expression |
1 |
|
unass |
|- ( ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) |
2 |
|
eqid |
|- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) |
3 |
2
|
imasvalstr |
|- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) Struct <. 1 , ; 1 2 >. |
4 |
|
1nn0 |
|- 1 e. NN0 |
5 |
|
4nn |
|- 4 e. NN |
6 |
4 5
|
decnncl |
|- ; 1 4 e. NN |
7 |
|
homndx |
|- ( Hom ` ndx ) = ; 1 4 |
8 |
|
4nn0 |
|- 4 e. NN0 |
9 |
|
5nn |
|- 5 e. NN |
10 |
|
4lt5 |
|- 4 < 5 |
11 |
4 8 9 10
|
declt |
|- ; 1 4 < ; 1 5 |
12 |
4 9
|
decnncl |
|- ; 1 5 e. NN |
13 |
|
ccondx |
|- ( comp ` ndx ) = ; 1 5 |
14 |
6 7 11 12 13
|
strle2 |
|- { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } Struct <. ; 1 4 , ; 1 5 >. |
15 |
|
2nn0 |
|- 2 e. NN0 |
16 |
|
2lt4 |
|- 2 < 4 |
17 |
4 15 5 16
|
declt |
|- ; 1 2 < ; 1 4 |
18 |
3 14 17
|
strleun |
|- ( ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) Struct <. 1 , ; 1 5 >. |
19 |
1 18
|
eqbrtrri |
|- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) Struct <. 1 , ; 1 5 >. |