| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsvscacl.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdsvscacl.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | prdsvscacl.t |  |-  .x. = ( .s ` Y ) | 
						
							| 4 |  | prdsvscacl.k |  |-  K = ( Base ` S ) | 
						
							| 5 |  | prdsvscacl.s |  |-  ( ph -> S e. Ring ) | 
						
							| 6 |  | prdsvscacl.i |  |-  ( ph -> I e. W ) | 
						
							| 7 |  | prdsvscacl.r |  |-  ( ph -> R : I --> LMod ) | 
						
							| 8 |  | prdsvscacl.f |  |-  ( ph -> F e. K ) | 
						
							| 9 |  | prdsvscacl.g |  |-  ( ph -> G e. B ) | 
						
							| 10 |  | prdsvscacl.sr |  |-  ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = S ) | 
						
							| 11 | 7 | ffnd |  |-  ( ph -> R Fn I ) | 
						
							| 12 | 1 2 3 4 5 6 11 8 9 | prdsvscaval |  |-  ( ph -> ( F .x. G ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) | 
						
							| 13 | 7 | ffvelcdmda |  |-  ( ( ph /\ x e. I ) -> ( R ` x ) e. LMod ) | 
						
							| 14 | 8 | adantr |  |-  ( ( ph /\ x e. I ) -> F e. K ) | 
						
							| 15 | 10 | fveq2d |  |-  ( ( ph /\ x e. I ) -> ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` S ) ) | 
						
							| 16 | 15 4 | eqtr4di |  |-  ( ( ph /\ x e. I ) -> ( Base ` ( Scalar ` ( R ` x ) ) ) = K ) | 
						
							| 17 | 14 16 | eleqtrrd |  |-  ( ( ph /\ x e. I ) -> F e. ( Base ` ( Scalar ` ( R ` x ) ) ) ) | 
						
							| 18 | 5 | adantr |  |-  ( ( ph /\ x e. I ) -> S e. Ring ) | 
						
							| 19 | 6 | adantr |  |-  ( ( ph /\ x e. I ) -> I e. W ) | 
						
							| 20 | 11 | adantr |  |-  ( ( ph /\ x e. I ) -> R Fn I ) | 
						
							| 21 | 9 | adantr |  |-  ( ( ph /\ x e. I ) -> G e. B ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ x e. I ) -> x e. I ) | 
						
							| 23 | 1 2 18 19 20 21 22 | prdsbasprj |  |-  ( ( ph /\ x e. I ) -> ( G ` x ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 24 |  | eqid |  |-  ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) | 
						
							| 25 |  | eqid |  |-  ( Scalar ` ( R ` x ) ) = ( Scalar ` ( R ` x ) ) | 
						
							| 26 |  | eqid |  |-  ( .s ` ( R ` x ) ) = ( .s ` ( R ` x ) ) | 
						
							| 27 |  | eqid |  |-  ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` ( Scalar ` ( R ` x ) ) ) | 
						
							| 28 | 24 25 26 27 | lmodvscl |  |-  ( ( ( R ` x ) e. LMod /\ F e. ( Base ` ( Scalar ` ( R ` x ) ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 29 | 13 17 23 28 | syl3anc |  |-  ( ( ph /\ x e. I ) -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 30 | 29 | ralrimiva |  |-  ( ph -> A. x e. I ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) | 
						
							| 31 | 1 2 5 6 11 | prdsbasmpt |  |-  ( ph -> ( ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) e. B <-> A. x e. I ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) ) | 
						
							| 32 | 30 31 | mpbird |  |-  ( ph -> ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) e. B ) | 
						
							| 33 | 12 32 | eqeltrd |  |-  ( ph -> ( F .x. G ) e. B ) |