| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y |  |-  Y = ( S Xs_ R ) | 
						
							| 2 |  | prdsbasmpt.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | prdsvscaval.t |  |-  .x. = ( .s ` Y ) | 
						
							| 4 |  | prdsvscaval.k |  |-  K = ( Base ` S ) | 
						
							| 5 |  | prdsvscaval.s |  |-  ( ph -> S e. V ) | 
						
							| 6 |  | prdsvscaval.i |  |-  ( ph -> I e. W ) | 
						
							| 7 |  | prdsvscaval.r |  |-  ( ph -> R Fn I ) | 
						
							| 8 |  | prdsvscaval.f |  |-  ( ph -> F e. K ) | 
						
							| 9 |  | prdsvscaval.g |  |-  ( ph -> G e. B ) | 
						
							| 10 |  | fnex |  |-  ( ( R Fn I /\ I e. W ) -> R e. _V ) | 
						
							| 11 | 7 6 10 | syl2anc |  |-  ( ph -> R e. _V ) | 
						
							| 12 | 7 | fndmd |  |-  ( ph -> dom R = I ) | 
						
							| 13 | 1 5 11 2 12 4 3 | prdsvsca |  |-  ( ph -> .x. = ( y e. K , z e. B |-> ( x e. I |-> ( y ( .s ` ( R ` x ) ) ( z ` x ) ) ) ) ) | 
						
							| 14 |  | id |  |-  ( y = F -> y = F ) | 
						
							| 15 |  | fveq1 |  |-  ( z = G -> ( z ` x ) = ( G ` x ) ) | 
						
							| 16 | 14 15 | oveqan12d |  |-  ( ( y = F /\ z = G ) -> ( y ( .s ` ( R ` x ) ) ( z ` x ) ) = ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ ( y = F /\ z = G ) ) -> ( y ( .s ` ( R ` x ) ) ( z ` x ) ) = ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) | 
						
							| 18 | 17 | mpteq2dv |  |-  ( ( ph /\ ( y = F /\ z = G ) ) -> ( x e. I |-> ( y ( .s ` ( R ` x ) ) ( z ` x ) ) ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) | 
						
							| 19 | 6 | mptexd |  |-  ( ph -> ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) e. _V ) | 
						
							| 20 | 13 18 8 9 19 | ovmpod |  |-  ( ph -> ( F .x. G ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) |