Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|- ( z = xO -> ( 0s 0s |
2 |
|
oveq1 |
|- ( z = xO -> ( z x.s y ) = ( xO x.s y ) ) |
3 |
2
|
eqeq1d |
|- ( z = xO -> ( ( z x.s y ) = 1s <-> ( xO x.s y ) = 1s ) ) |
4 |
3
|
rexbidv |
|- ( z = xO -> ( E. y e. No ( z x.s y ) = 1s <-> E. y e. No ( xO x.s y ) = 1s ) ) |
5 |
1 4
|
imbi12d |
|- ( z = xO -> ( ( 0s E. y e. No ( z x.s y ) = 1s ) <-> ( 0s E. y e. No ( xO x.s y ) = 1s ) ) ) |
6 |
|
breq2 |
|- ( z = A -> ( 0s 0s |
7 |
|
oveq1 |
|- ( z = A -> ( z x.s y ) = ( A x.s y ) ) |
8 |
7
|
eqeq1d |
|- ( z = A -> ( ( z x.s y ) = 1s <-> ( A x.s y ) = 1s ) ) |
9 |
8
|
rexbidv |
|- ( z = A -> ( E. y e. No ( z x.s y ) = 1s <-> E. y e. No ( A x.s y ) = 1s ) ) |
10 |
6 9
|
imbi12d |
|- ( z = A -> ( ( 0s E. y e. No ( z x.s y ) = 1s ) <-> ( 0s E. y e. No ( A x.s y ) = 1s ) ) ) |
11 |
|
eqid |
|- rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) = rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) |
12 |
11
|
precsexlemcbv |
|- rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` z ) E. yL e. l a = ( ( 1s +s ( ( xR -s z ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) |
13 |
|
eqid |
|- ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) = ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) |
14 |
|
eqid |
|- ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) = ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) |
15 |
|
simp1 |
|- ( ( z e. No /\ 0s E. y e. No ( xO x.s y ) = 1s ) ) -> z e. No ) |
16 |
|
simp2 |
|- ( ( z e. No /\ 0s E. y e. No ( xO x.s y ) = 1s ) ) -> 0s |
17 |
|
simp3 |
|- ( ( z e. No /\ 0s E. y e. No ( xO x.s y ) = 1s ) ) -> A. xO e. ( ( _Left ` z ) u. ( _Right ` z ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
18 |
12 13 14 15 16 17
|
precsexlem10 |
|- ( ( z e. No /\ 0s E. y e. No ( xO x.s y ) = 1s ) ) -> U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) < [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) |
19 |
18
|
scutcld |
|- ( ( z e. No /\ 0s E. y e. No ( xO x.s y ) = 1s ) ) -> ( U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) |s U. ( ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) e. No ) |
20 |
|
eqid |
|- ( U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) |s U. ( ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) = ( U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) |s U. ( ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) |
21 |
12 13 14 15 16 17 20
|
precsexlem11 |
|- ( ( z e. No /\ 0s E. y e. No ( xO x.s y ) = 1s ) ) -> ( z x.s ( U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) |s U. ( ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) ) = 1s ) |
22 |
|
oveq2 |
|- ( y = ( U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) |s U. ( ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) -> ( z x.s y ) = ( z x.s ( U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) |s U. ( ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) ) ) |
23 |
22
|
eqeq1d |
|- ( y = ( U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) |s U. ( ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) -> ( ( z x.s y ) = 1s <-> ( z x.s ( U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) |s U. ( ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) ) = 1s ) ) |
24 |
23
|
rspcev |
|- ( ( ( U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) |s U. ( ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) e. No /\ ( z x.s ( U. ( ( 1st o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) |s U. ( ( 2nd o. rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` z ) E. w e. m b = ( ( 1s +s ( ( zR -s z ) x.s w ) ) /su zR ) } u. { b | E. zL e. { u e. ( _Left ` z ) | 0s . ) , <. { 0s } , (/) >. ) ) " _om ) ) ) = 1s ) -> E. y e. No ( z x.s y ) = 1s ) |
25 |
19 21 24
|
syl2anc |
|- ( ( z e. No /\ 0s E. y e. No ( xO x.s y ) = 1s ) ) -> E. y e. No ( z x.s y ) = 1s ) |
26 |
25
|
3exp |
|- ( z e. No -> ( 0s ( A. xO e. ( ( _Left ` z ) u. ( _Right ` z ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) -> E. y e. No ( z x.s y ) = 1s ) ) ) |
27 |
26
|
com23 |
|- ( z e. No -> ( A. xO e. ( ( _Left ` z ) u. ( _Right ` z ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) -> ( 0s E. y e. No ( z x.s y ) = 1s ) ) ) |
28 |
5 10 27
|
noinds |
|- ( A e. No -> ( 0s E. y e. No ( A x.s y ) = 1s ) ) |
29 |
28
|
imp |
|- ( ( A e. No /\ 0s E. y e. No ( A x.s y ) = 1s ) |