Metamath Proof Explorer


Theorem precsexlem1

Description: Lemma for surreal reciprocals. Calculate the value of the recursive left function at zero. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses precsexlem.1
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. )
precsexlem.2
|- L = ( 1st o. F )
precsexlem.3
|- R = ( 2nd o. F )
Assertion precsexlem1
|- ( L ` (/) ) = { 0s }

Proof

Step Hyp Ref Expression
1 precsexlem.1
 |-  F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. )
2 precsexlem.2
 |-  L = ( 1st o. F )
3 precsexlem.3
 |-  R = ( 2nd o. F )
4 2 fveq1i
 |-  ( L ` (/) ) = ( ( 1st o. F ) ` (/) )
5 rdgfnon
 |-  rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On
6 1 fneq1i
 |-  ( F Fn On <-> rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On )
7 5 6 mpbir
 |-  F Fn On
8 0elon
 |-  (/) e. On
9 fvco2
 |-  ( ( F Fn On /\ (/) e. On ) -> ( ( 1st o. F ) ` (/) ) = ( 1st ` ( F ` (/) ) ) )
10 7 8 9 mp2an
 |-  ( ( 1st o. F ) ` (/) ) = ( 1st ` ( F ` (/) ) )
11 1 fveq1i
 |-  ( F ` (/) ) = ( rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ` (/) )
12 opex
 |-  <. { 0s } , (/) >. e. _V
13 12 rdg0
 |-  ( rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ` (/) ) = <. { 0s } , (/) >.
14 11 13 eqtri
 |-  ( F ` (/) ) = <. { 0s } , (/) >.
15 14 fveq2i
 |-  ( 1st ` ( F ` (/) ) ) = ( 1st ` <. { 0s } , (/) >. )
16 snex
 |-  { 0s } e. _V
17 0ex
 |-  (/) e. _V
18 16 17 op1st
 |-  ( 1st ` <. { 0s } , (/) >. ) = { 0s }
19 15 18 eqtri
 |-  ( 1st ` ( F ` (/) ) ) = { 0s }
20 4 10 19 3eqtri
 |-  ( L ` (/) ) = { 0s }