| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precsexlem.1 |
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
| 2 |
|
precsexlem.2 |
|- L = ( 1st o. F ) |
| 3 |
|
precsexlem.3 |
|- R = ( 2nd o. F ) |
| 4 |
|
precsexlem.4 |
|- ( ph -> A e. No ) |
| 5 |
|
precsexlem.5 |
|- ( ph -> 0s |
| 6 |
|
precsexlem.6 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
| 7 |
|
fo1st |
|- 1st : _V -onto-> _V |
| 8 |
|
fofun |
|- ( 1st : _V -onto-> _V -> Fun 1st ) |
| 9 |
7 8
|
ax-mp |
|- Fun 1st |
| 10 |
|
rdgfun |
|- Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
| 11 |
1
|
funeqi |
|- ( Fun F <-> Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ) |
| 12 |
10 11
|
mpbir |
|- Fun F |
| 13 |
|
funco |
|- ( ( Fun 1st /\ Fun F ) -> Fun ( 1st o. F ) ) |
| 14 |
9 12 13
|
mp2an |
|- Fun ( 1st o. F ) |
| 15 |
2
|
funeqi |
|- ( Fun L <-> Fun ( 1st o. F ) ) |
| 16 |
14 15
|
mpbir |
|- Fun L |
| 17 |
|
dcomex |
|- _om e. _V |
| 18 |
17
|
funimaex |
|- ( Fun L -> ( L " _om ) e. _V ) |
| 19 |
16 18
|
ax-mp |
|- ( L " _om ) e. _V |
| 20 |
19
|
uniex |
|- U. ( L " _om ) e. _V |
| 21 |
20
|
a1i |
|- ( ph -> U. ( L " _om ) e. _V ) |
| 22 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
| 23 |
|
fofun |
|- ( 2nd : _V -onto-> _V -> Fun 2nd ) |
| 24 |
22 23
|
ax-mp |
|- Fun 2nd |
| 25 |
|
funco |
|- ( ( Fun 2nd /\ Fun F ) -> Fun ( 2nd o. F ) ) |
| 26 |
24 12 25
|
mp2an |
|- Fun ( 2nd o. F ) |
| 27 |
3
|
funeqi |
|- ( Fun R <-> Fun ( 2nd o. F ) ) |
| 28 |
26 27
|
mpbir |
|- Fun R |
| 29 |
17
|
funimaex |
|- ( Fun R -> ( R " _om ) e. _V ) |
| 30 |
28 29
|
ax-mp |
|- ( R " _om ) e. _V |
| 31 |
30
|
uniex |
|- U. ( R " _om ) e. _V |
| 32 |
31
|
a1i |
|- ( ph -> U. ( R " _om ) e. _V ) |
| 33 |
|
funiunfv |
|- ( Fun L -> U_ i e. _om ( L ` i ) = U. ( L " _om ) ) |
| 34 |
16 33
|
ax-mp |
|- U_ i e. _om ( L ` i ) = U. ( L " _om ) |
| 35 |
1 2 3 4 5 6
|
precsexlem8 |
|- ( ( ph /\ i e. _om ) -> ( ( L ` i ) C_ No /\ ( R ` i ) C_ No ) ) |
| 36 |
35
|
simpld |
|- ( ( ph /\ i e. _om ) -> ( L ` i ) C_ No ) |
| 37 |
36
|
iunssd |
|- ( ph -> U_ i e. _om ( L ` i ) C_ No ) |
| 38 |
34 37
|
eqsstrrid |
|- ( ph -> U. ( L " _om ) C_ No ) |
| 39 |
|
funiunfv |
|- ( Fun R -> U_ i e. _om ( R ` i ) = U. ( R " _om ) ) |
| 40 |
28 39
|
ax-mp |
|- U_ i e. _om ( R ` i ) = U. ( R " _om ) |
| 41 |
35
|
simprd |
|- ( ( ph /\ i e. _om ) -> ( R ` i ) C_ No ) |
| 42 |
41
|
iunssd |
|- ( ph -> U_ i e. _om ( R ` i ) C_ No ) |
| 43 |
40 42
|
eqsstrrid |
|- ( ph -> U. ( R " _om ) C_ No ) |
| 44 |
34
|
eleq2i |
|- ( b e. U_ i e. _om ( L ` i ) <-> b e. U. ( L " _om ) ) |
| 45 |
|
eliun |
|- ( b e. U_ i e. _om ( L ` i ) <-> E. i e. _om b e. ( L ` i ) ) |
| 46 |
44 45
|
bitr3i |
|- ( b e. U. ( L " _om ) <-> E. i e. _om b e. ( L ` i ) ) |
| 47 |
|
funiunfv |
|- ( Fun R -> U_ j e. _om ( R ` j ) = U. ( R " _om ) ) |
| 48 |
28 47
|
ax-mp |
|- U_ j e. _om ( R ` j ) = U. ( R " _om ) |
| 49 |
48
|
eleq2i |
|- ( c e. U_ j e. _om ( R ` j ) <-> c e. U. ( R " _om ) ) |
| 50 |
|
eliun |
|- ( c e. U_ j e. _om ( R ` j ) <-> E. j e. _om c e. ( R ` j ) ) |
| 51 |
49 50
|
bitr3i |
|- ( c e. U. ( R " _om ) <-> E. j e. _om c e. ( R ` j ) ) |
| 52 |
46 51
|
anbi12i |
|- ( ( b e. U. ( L " _om ) /\ c e. U. ( R " _om ) ) <-> ( E. i e. _om b e. ( L ` i ) /\ E. j e. _om c e. ( R ` j ) ) ) |
| 53 |
|
reeanv |
|- ( E. i e. _om E. j e. _om ( b e. ( L ` i ) /\ c e. ( R ` j ) ) <-> ( E. i e. _om b e. ( L ` i ) /\ E. j e. _om c e. ( R ` j ) ) ) |
| 54 |
52 53
|
bitr4i |
|- ( ( b e. U. ( L " _om ) /\ c e. U. ( R " _om ) ) <-> E. i e. _om E. j e. _om ( b e. ( L ` i ) /\ c e. ( R ` j ) ) ) |
| 55 |
|
omun |
|- ( ( i e. _om /\ j e. _om ) -> ( i u. j ) e. _om ) |
| 56 |
|
ssun1 |
|- i C_ ( i u. j ) |
| 57 |
1 2 3
|
precsexlem6 |
|- ( ( i e. _om /\ ( i u. j ) e. _om /\ i C_ ( i u. j ) ) -> ( L ` i ) C_ ( L ` ( i u. j ) ) ) |
| 58 |
56 57
|
mp3an3 |
|- ( ( i e. _om /\ ( i u. j ) e. _om ) -> ( L ` i ) C_ ( L ` ( i u. j ) ) ) |
| 59 |
55 58
|
syldan |
|- ( ( i e. _om /\ j e. _om ) -> ( L ` i ) C_ ( L ` ( i u. j ) ) ) |
| 60 |
59
|
adantl |
|- ( ( ph /\ ( i e. _om /\ j e. _om ) ) -> ( L ` i ) C_ ( L ` ( i u. j ) ) ) |
| 61 |
60
|
sseld |
|- ( ( ph /\ ( i e. _om /\ j e. _om ) ) -> ( b e. ( L ` i ) -> b e. ( L ` ( i u. j ) ) ) ) |
| 62 |
|
simpr |
|- ( ( i e. _om /\ j e. _om ) -> j e. _om ) |
| 63 |
|
ssun2 |
|- j C_ ( i u. j ) |
| 64 |
1 2 3
|
precsexlem7 |
|- ( ( j e. _om /\ ( i u. j ) e. _om /\ j C_ ( i u. j ) ) -> ( R ` j ) C_ ( R ` ( i u. j ) ) ) |
| 65 |
63 64
|
mp3an3 |
|- ( ( j e. _om /\ ( i u. j ) e. _om ) -> ( R ` j ) C_ ( R ` ( i u. j ) ) ) |
| 66 |
62 55 65
|
syl2anc |
|- ( ( i e. _om /\ j e. _om ) -> ( R ` j ) C_ ( R ` ( i u. j ) ) ) |
| 67 |
66
|
sseld |
|- ( ( i e. _om /\ j e. _om ) -> ( c e. ( R ` j ) -> c e. ( R ` ( i u. j ) ) ) ) |
| 68 |
67
|
adantl |
|- ( ( ph /\ ( i e. _om /\ j e. _om ) ) -> ( c e. ( R ` j ) -> c e. ( R ` ( i u. j ) ) ) ) |
| 69 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> A e. No ) |
| 70 |
1 2 3 4 5 6
|
precsexlem8 |
|- ( ( ph /\ ( i u. j ) e. _om ) -> ( ( L ` ( i u. j ) ) C_ No /\ ( R ` ( i u. j ) ) C_ No ) ) |
| 71 |
70
|
simpld |
|- ( ( ph /\ ( i u. j ) e. _om ) -> ( L ` ( i u. j ) ) C_ No ) |
| 72 |
71
|
sselda |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ b e. ( L ` ( i u. j ) ) ) -> b e. No ) |
| 73 |
72
|
adantrr |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> b e. No ) |
| 74 |
69 73
|
mulscld |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( A x.s b ) e. No ) |
| 75 |
70
|
simprd |
|- ( ( ph /\ ( i u. j ) e. _om ) -> ( R ` ( i u. j ) ) C_ No ) |
| 76 |
75
|
sselda |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ c e. ( R ` ( i u. j ) ) ) -> c e. No ) |
| 77 |
76
|
adantrl |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> c e. No ) |
| 78 |
69 77
|
mulscld |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( A x.s c ) e. No ) |
| 79 |
74 78
|
jca |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( ( A x.s b ) e. No /\ ( A x.s c ) e. No ) ) |
| 80 |
1 2 3 4 5 6
|
precsexlem9 |
|- ( ( ph /\ ( i u. j ) e. _om ) -> ( A. b e. ( L ` ( i u. j ) ) ( A x.s b ) |
| 81 |
80
|
simpld |
|- ( ( ph /\ ( i u. j ) e. _om ) -> A. b e. ( L ` ( i u. j ) ) ( A x.s b ) |
| 82 |
|
rsp |
|- ( A. b e. ( L ` ( i u. j ) ) ( A x.s b ) ( b e. ( L ` ( i u. j ) ) -> ( A x.s b ) |
| 83 |
81 82
|
syl |
|- ( ( ph /\ ( i u. j ) e. _om ) -> ( b e. ( L ` ( i u. j ) ) -> ( A x.s b ) |
| 84 |
80
|
simprd |
|- ( ( ph /\ ( i u. j ) e. _om ) -> A. c e. ( R ` ( i u. j ) ) 1s |
| 85 |
|
rsp |
|- ( A. c e. ( R ` ( i u. j ) ) 1s ( c e. ( R ` ( i u. j ) ) -> 1s |
| 86 |
84 85
|
syl |
|- ( ( ph /\ ( i u. j ) e. _om ) -> ( c e. ( R ` ( i u. j ) ) -> 1s |
| 87 |
83 86
|
anim12d |
|- ( ( ph /\ ( i u. j ) e. _om ) -> ( ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) -> ( ( A x.s b ) |
| 88 |
87
|
imp |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( ( A x.s b ) |
| 89 |
|
1sno |
|- 1s e. No |
| 90 |
|
slttr |
|- ( ( ( A x.s b ) e. No /\ 1s e. No /\ ( A x.s c ) e. No ) -> ( ( ( A x.s b ) ( A x.s b ) |
| 91 |
89 90
|
mp3an2 |
|- ( ( ( A x.s b ) e. No /\ ( A x.s c ) e. No ) -> ( ( ( A x.s b ) ( A x.s b ) |
| 92 |
79 88 91
|
sylc |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( A x.s b ) |
| 93 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> 0s |
| 94 |
73 77 69 93
|
sltmul2d |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( b ( A x.s b ) |
| 95 |
92 94
|
mpbird |
|- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> b |
| 96 |
95
|
ex |
|- ( ( ph /\ ( i u. j ) e. _om ) -> ( ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) -> b |
| 97 |
55 96
|
sylan2 |
|- ( ( ph /\ ( i e. _om /\ j e. _om ) ) -> ( ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) -> b |
| 98 |
61 68 97
|
syl2and |
|- ( ( ph /\ ( i e. _om /\ j e. _om ) ) -> ( ( b e. ( L ` i ) /\ c e. ( R ` j ) ) -> b |
| 99 |
98
|
rexlimdvva |
|- ( ph -> ( E. i e. _om E. j e. _om ( b e. ( L ` i ) /\ c e. ( R ` j ) ) -> b |
| 100 |
54 99
|
biimtrid |
|- ( ph -> ( ( b e. U. ( L " _om ) /\ c e. U. ( R " _om ) ) -> b |
| 101 |
100
|
3impib |
|- ( ( ph /\ b e. U. ( L " _om ) /\ c e. U. ( R " _om ) ) -> b |
| 102 |
21 32 38 43 101
|
ssltd |
|- ( ph -> U. ( L " _om ) < |