Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
2 |
|
precsexlem.2 |
|- L = ( 1st o. F ) |
3 |
|
precsexlem.3 |
|- R = ( 2nd o. F ) |
4 |
3
|
fveq1i |
|- ( R ` (/) ) = ( ( 2nd o. F ) ` (/) ) |
5 |
|
rdgfnon |
|- rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On |
6 |
1
|
fneq1i |
|- ( F Fn On <-> rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On ) |
7 |
5 6
|
mpbir |
|- F Fn On |
8 |
|
0elon |
|- (/) e. On |
9 |
|
fvco2 |
|- ( ( F Fn On /\ (/) e. On ) -> ( ( 2nd o. F ) ` (/) ) = ( 2nd ` ( F ` (/) ) ) ) |
10 |
7 8 9
|
mp2an |
|- ( ( 2nd o. F ) ` (/) ) = ( 2nd ` ( F ` (/) ) ) |
11 |
1
|
fveq1i |
|- ( F ` (/) ) = ( rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ` (/) ) |
12 |
|
opex |
|- <. { 0s } , (/) >. e. _V |
13 |
12
|
rdg0 |
|- ( rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ` (/) ) = <. { 0s } , (/) >. |
14 |
11 13
|
eqtri |
|- ( F ` (/) ) = <. { 0s } , (/) >. |
15 |
14
|
fveq2i |
|- ( 2nd ` ( F ` (/) ) ) = ( 2nd ` <. { 0s } , (/) >. ) |
16 |
|
snex |
|- { 0s } e. _V |
17 |
|
0ex |
|- (/) e. _V |
18 |
16 17
|
op2nd |
|- ( 2nd ` <. { 0s } , (/) >. ) = (/) |
19 |
15 18
|
eqtri |
|- ( 2nd ` ( F ` (/) ) ) = (/) |
20 |
4 10 19
|
3eqtri |
|- ( R ` (/) ) = (/) |