Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
2 |
|
precsexlem.2 |
|- L = ( 1st o. F ) |
3 |
|
precsexlem.3 |
|- R = ( 2nd o. F ) |
4 |
|
nnon |
|- ( I e. _om -> I e. On ) |
5 |
|
opex |
|- <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . e. _V |
6 |
5
|
csbex |
|- [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . e. _V |
7 |
6
|
csbex |
|- [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . e. _V |
8 |
|
fveq2 |
|- ( p = ( F ` I ) -> ( 1st ` p ) = ( 1st ` ( F ` I ) ) ) |
9 |
|
fveq2 |
|- ( p = ( F ` I ) -> ( 2nd ` p ) = ( 2nd ` ( F ` I ) ) ) |
10 |
9
|
csbeq1d |
|- ( p = ( F ` I ) -> [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
11 |
8 10
|
csbeq12dv |
|- ( p = ( F ` I ) -> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
12 |
1 11
|
rdgsucmpt |
|- ( ( I e. On /\ [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . e. _V ) -> ( F ` suc I ) = [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
13 |
4 7 12
|
sylancl |
|- ( I e. _om -> ( F ` suc I ) = [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
14 |
2
|
fveq1i |
|- ( L ` I ) = ( ( 1st o. F ) ` I ) |
15 |
|
rdgfnon |
|- rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On |
16 |
1
|
fneq1i |
|- ( F Fn On <-> rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On ) |
17 |
15 16
|
mpbir |
|- F Fn On |
18 |
|
fvco2 |
|- ( ( F Fn On /\ I e. On ) -> ( ( 1st o. F ) ` I ) = ( 1st ` ( F ` I ) ) ) |
19 |
17 4 18
|
sylancr |
|- ( I e. _om -> ( ( 1st o. F ) ` I ) = ( 1st ` ( F ` I ) ) ) |
20 |
14 19
|
eqtrid |
|- ( I e. _om -> ( L ` I ) = ( 1st ` ( F ` I ) ) ) |
21 |
3
|
fveq1i |
|- ( R ` I ) = ( ( 2nd o. F ) ` I ) |
22 |
|
fvco2 |
|- ( ( F Fn On /\ I e. On ) -> ( ( 2nd o. F ) ` I ) = ( 2nd ` ( F ` I ) ) ) |
23 |
17 4 22
|
sylancr |
|- ( I e. _om -> ( ( 2nd o. F ) ` I ) = ( 2nd ` ( F ` I ) ) ) |
24 |
21 23
|
eqtrid |
|- ( I e. _om -> ( R ` I ) = ( 2nd ` ( F ` I ) ) ) |
25 |
24
|
csbeq1d |
|- ( I e. _om -> [_ ( R ` I ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
26 |
20 25
|
csbeq12dv |
|- ( I e. _om -> [_ ( L ` I ) / l ]_ [_ ( R ` I ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
27 |
|
fvex |
|- ( R ` I ) e. _V |
28 |
|
rexeq |
|- ( r = ( R ` I ) -> ( E. yR e. r a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
29 |
28
|
rexbidv |
|- ( r = ( R ` I ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
30 |
29
|
abbidv |
|- ( r = ( R ` I ) -> { a | E. xL e. { x e. ( _Left ` A ) | 0s |
31 |
30
|
uneq2d |
|- ( r = ( R ` I ) -> ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
32 |
31
|
uneq2d |
|- ( r = ( R ` I ) -> ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
33 |
|
id |
|- ( r = ( R ` I ) -> r = ( R ` I ) ) |
34 |
|
rexeq |
|- ( r = ( R ` I ) -> ( E. yR e. r a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
35 |
34
|
rexbidv |
|- ( r = ( R ` I ) -> ( E. xR e. ( _Right ` A ) E. yR e. r a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
36 |
35
|
abbidv |
|- ( r = ( R ` I ) -> { a | E. xR e. ( _Right ` A ) E. yR e. r a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } = { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } ) |
37 |
36
|
uneq2d |
|- ( r = ( R ` I ) -> ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
38 |
33 37
|
uneq12d |
|- ( r = ( R ` I ) -> ( r u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
39 |
32 38
|
opeq12d |
|- ( r = ( R ` I ) -> <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
40 |
27 39
|
csbie |
|- [_ ( R ` I ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . |
41 |
40
|
csbeq2i |
|- [_ ( L ` I ) / l ]_ [_ ( R ` I ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( L ` I ) / l ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . |
42 |
|
fvex |
|- ( L ` I ) e. _V |
43 |
|
id |
|- ( l = ( L ` I ) -> l = ( L ` I ) ) |
44 |
|
rexeq |
|- ( l = ( L ` I ) -> ( E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
45 |
44
|
rexbidv |
|- ( l = ( L ` I ) -> ( E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
46 |
45
|
abbidv |
|- ( l = ( L ` I ) -> { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } = { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } ) |
47 |
46
|
uneq1d |
|- ( l = ( L ` I ) -> ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
48 |
43 47
|
uneq12d |
|- ( l = ( L ` I ) -> ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
49 |
|
rexeq |
|- ( l = ( L ` I ) -> ( E. yL e. l a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) |
50 |
49
|
rexbidv |
|- ( l = ( L ` I ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
51 |
50
|
abbidv |
|- ( l = ( L ` I ) -> { a | E. xL e. { x e. ( _Left ` A ) | 0s |
52 |
51
|
uneq1d |
|- ( l = ( L ` I ) -> ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
53 |
52
|
uneq2d |
|- ( l = ( L ` I ) -> ( ( R ` I ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
54 |
48 53
|
opeq12d |
|- ( l = ( L ` I ) -> <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
55 |
42 54
|
csbie |
|- [_ ( L ` I ) / l ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . |
56 |
41 55
|
eqtri |
|- [_ ( L ` I ) / l ]_ [_ ( R ` I ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . |
57 |
26 56
|
eqtr3di |
|- ( I e. _om -> [_ ( 1st ` ( F ` I ) ) / l ]_ [_ ( 2nd ` ( F ` I ) ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
58 |
13 57
|
eqtrd |
|- ( I e. _om -> ( F ` suc I ) = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |