Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
2 |
|
precsexlem.2 |
|- L = ( 1st o. F ) |
3 |
|
precsexlem.3 |
|- R = ( 2nd o. F ) |
4 |
|
precsexlem.4 |
|- ( ph -> A e. No ) |
5 |
|
precsexlem.5 |
|- ( ph -> 0s |
6 |
|
precsexlem.6 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
7 |
|
fveq2 |
|- ( i = (/) -> ( L ` i ) = ( L ` (/) ) ) |
8 |
7
|
raleqdv |
|- ( i = (/) -> ( A. b e. ( L ` i ) ( A x.s b ) A. b e. ( L ` (/) ) ( A x.s b ) |
9 |
|
fveq2 |
|- ( i = (/) -> ( R ` i ) = ( R ` (/) ) ) |
10 |
9
|
raleqdv |
|- ( i = (/) -> ( A. c e. ( R ` i ) 1s A. c e. ( R ` (/) ) 1s |
11 |
8 10
|
anbi12d |
|- ( i = (/) -> ( ( A. b e. ( L ` i ) ( A x.s b ) ( A. b e. ( L ` (/) ) ( A x.s b ) |
12 |
11
|
imbi2d |
|- ( i = (/) -> ( ( ph -> ( A. b e. ( L ` i ) ( A x.s b ) ( ph -> ( A. b e. ( L ` (/) ) ( A x.s b ) |
13 |
|
fveq2 |
|- ( i = j -> ( L ` i ) = ( L ` j ) ) |
14 |
13
|
raleqdv |
|- ( i = j -> ( A. b e. ( L ` i ) ( A x.s b ) A. b e. ( L ` j ) ( A x.s b ) |
15 |
|
fveq2 |
|- ( i = j -> ( R ` i ) = ( R ` j ) ) |
16 |
15
|
raleqdv |
|- ( i = j -> ( A. c e. ( R ` i ) 1s A. c e. ( R ` j ) 1s |
17 |
14 16
|
anbi12d |
|- ( i = j -> ( ( A. b e. ( L ` i ) ( A x.s b ) ( A. b e. ( L ` j ) ( A x.s b ) |
18 |
17
|
imbi2d |
|- ( i = j -> ( ( ph -> ( A. b e. ( L ` i ) ( A x.s b ) ( ph -> ( A. b e. ( L ` j ) ( A x.s b ) |
19 |
|
fveq2 |
|- ( i = suc j -> ( L ` i ) = ( L ` suc j ) ) |
20 |
19
|
raleqdv |
|- ( i = suc j -> ( A. b e. ( L ` i ) ( A x.s b ) A. b e. ( L ` suc j ) ( A x.s b ) |
21 |
|
fveq2 |
|- ( i = suc j -> ( R ` i ) = ( R ` suc j ) ) |
22 |
21
|
raleqdv |
|- ( i = suc j -> ( A. c e. ( R ` i ) 1s A. c e. ( R ` suc j ) 1s |
23 |
20 22
|
anbi12d |
|- ( i = suc j -> ( ( A. b e. ( L ` i ) ( A x.s b ) ( A. b e. ( L ` suc j ) ( A x.s b ) |
24 |
|
oveq2 |
|- ( b = r -> ( A x.s b ) = ( A x.s r ) ) |
25 |
24
|
breq1d |
|- ( b = r -> ( ( A x.s b ) ( A x.s r ) |
26 |
25
|
cbvralvw |
|- ( A. b e. ( L ` suc j ) ( A x.s b ) A. r e. ( L ` suc j ) ( A x.s r ) |
27 |
|
oveq2 |
|- ( c = s -> ( A x.s c ) = ( A x.s s ) ) |
28 |
27
|
breq2d |
|- ( c = s -> ( 1s 1s |
29 |
28
|
cbvralvw |
|- ( A. c e. ( R ` suc j ) 1s A. s e. ( R ` suc j ) 1s |
30 |
26 29
|
anbi12i |
|- ( ( A. b e. ( L ` suc j ) ( A x.s b ) ( A. r e. ( L ` suc j ) ( A x.s r ) |
31 |
23 30
|
bitrdi |
|- ( i = suc j -> ( ( A. b e. ( L ` i ) ( A x.s b ) ( A. r e. ( L ` suc j ) ( A x.s r ) |
32 |
31
|
imbi2d |
|- ( i = suc j -> ( ( ph -> ( A. b e. ( L ` i ) ( A x.s b ) ( ph -> ( A. r e. ( L ` suc j ) ( A x.s r ) |
33 |
|
fveq2 |
|- ( i = I -> ( L ` i ) = ( L ` I ) ) |
34 |
33
|
raleqdv |
|- ( i = I -> ( A. b e. ( L ` i ) ( A x.s b ) A. b e. ( L ` I ) ( A x.s b ) |
35 |
|
fveq2 |
|- ( i = I -> ( R ` i ) = ( R ` I ) ) |
36 |
35
|
raleqdv |
|- ( i = I -> ( A. c e. ( R ` i ) 1s A. c e. ( R ` I ) 1s |
37 |
34 36
|
anbi12d |
|- ( i = I -> ( ( A. b e. ( L ` i ) ( A x.s b ) ( A. b e. ( L ` I ) ( A x.s b ) |
38 |
37
|
imbi2d |
|- ( i = I -> ( ( ph -> ( A. b e. ( L ` i ) ( A x.s b ) ( ph -> ( A. b e. ( L ` I ) ( A x.s b ) |
39 |
|
muls01 |
|- ( A e. No -> ( A x.s 0s ) = 0s ) |
40 |
4 39
|
syl |
|- ( ph -> ( A x.s 0s ) = 0s ) |
41 |
|
0slt1s |
|- 0s |
42 |
40 41
|
eqbrtrdi |
|- ( ph -> ( A x.s 0s ) |
43 |
1 2 3
|
precsexlem1 |
|- ( L ` (/) ) = { 0s } |
44 |
43
|
raleqi |
|- ( A. b e. ( L ` (/) ) ( A x.s b ) A. b e. { 0s } ( A x.s b ) |
45 |
|
0sno |
|- 0s e. No |
46 |
45
|
elexi |
|- 0s e. _V |
47 |
|
oveq2 |
|- ( b = 0s -> ( A x.s b ) = ( A x.s 0s ) ) |
48 |
47
|
breq1d |
|- ( b = 0s -> ( ( A x.s b ) ( A x.s 0s ) |
49 |
46 48
|
ralsn |
|- ( A. b e. { 0s } ( A x.s b ) ( A x.s 0s ) |
50 |
44 49
|
bitri |
|- ( A. b e. ( L ` (/) ) ( A x.s b ) ( A x.s 0s ) |
51 |
42 50
|
sylibr |
|- ( ph -> A. b e. ( L ` (/) ) ( A x.s b ) |
52 |
|
ral0 |
|- A. c e. (/) 1s |
53 |
1 2 3
|
precsexlem2 |
|- ( R ` (/) ) = (/) |
54 |
53
|
raleqi |
|- ( A. c e. ( R ` (/) ) 1s A. c e. (/) 1s |
55 |
52 54
|
mpbir |
|- A. c e. ( R ` (/) ) 1s |
56 |
51 55
|
jctir |
|- ( ph -> ( A. b e. ( L ` (/) ) ( A x.s b ) |
57 |
1 2 3
|
precsexlem4 |
|- ( j e. _om -> ( L ` suc j ) = ( ( L ` j ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
58 |
57
|
3ad2ant2 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( L ` suc j ) = ( ( L ` j ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
59 |
58
|
eleq2d |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r e. ( L ` suc j ) <-> r e. ( ( L ` j ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
60 |
|
elun |
|- ( r e. ( ( L ` j ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( r e. ( L ` j ) \/ r e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
61 |
|
elun |
|- ( r e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( r e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } \/ r e. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
62 |
|
vex |
|- r e. _V |
63 |
|
eqeq1 |
|- ( a = r -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
64 |
63
|
2rexbidv |
|- ( a = r -> ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
65 |
62 64
|
elab |
|- ( r e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
66 |
|
eqeq1 |
|- ( a = r -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> r = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
67 |
66
|
2rexbidv |
|- ( a = r -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
68 |
62 67
|
elab |
|- ( r e. { a | E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
69 |
65 68
|
orbi12i |
|- ( ( r e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } \/ r e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s |
70 |
61 69
|
bitri |
|- ( r e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s |
71 |
70
|
orbi2i |
|- ( ( r e. ( L ` j ) \/ r e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( r e. ( L ` j ) \/ ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s |
72 |
60 71
|
bitri |
|- ( r e. ( ( L ` j ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( r e. ( L ` j ) \/ ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s |
73 |
59 72
|
bitrdi |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r e. ( L ` suc j ) <-> ( r e. ( L ` j ) \/ ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s |
74 |
|
simp3l |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. b e. ( L ` j ) ( A x.s b ) |
75 |
25
|
rspccv |
|- ( A. b e. ( L ` j ) ( A x.s b ) ( r e. ( L ` j ) -> ( A x.s r ) |
76 |
74 75
|
syl |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r e. ( L ` j ) -> ( A x.s r ) |
77 |
4
|
3ad2ant1 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
78 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
79 |
|
1sno |
|- 1s e. No |
80 |
79
|
a1i |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s e. No ) |
81 |
|
rightssno |
|- ( _Right ` A ) C_ No |
82 |
81
|
sseli |
|- ( xR e. ( _Right ` A ) -> xR e. No ) |
83 |
82
|
adantl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR e. No ) |
84 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
85 |
83 84
|
subscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xR -s A ) e. No ) |
86 |
85
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xR -s A ) e. No ) |
87 |
1 2 3 4 5 6
|
precsexlem8 |
|- ( ( ph /\ j e. _om ) -> ( ( L ` j ) C_ No /\ ( R ` j ) C_ No ) ) |
88 |
87
|
simpld |
|- ( ( ph /\ j e. _om ) -> ( L ` j ) C_ No ) |
89 |
88
|
3adant3 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( L ` j ) C_ No ) |
90 |
89
|
sselda |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yL e. No ) |
91 |
90
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yL e. No ) |
92 |
86 91
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s yL ) e. No ) |
93 |
80 92
|
addscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s +s ( ( xR -s A ) x.s yL ) ) e. No ) |
94 |
83
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR e. No ) |
95 |
45
|
a1i |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s e. No ) |
96 |
5
|
3ad2ant1 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
97 |
96
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
98 |
|
breq2 |
|- ( xO = xR -> ( A A |
99 |
|
rightval |
|- ( _Right ` A ) = { xO e. ( _Old ` ( bday ` A ) ) | A |
100 |
98 99
|
elrab2 |
|- ( xR e. ( _Right ` A ) <-> ( xR e. ( _Old ` ( bday ` A ) ) /\ A |
101 |
100
|
simprbi |
|- ( xR e. ( _Right ` A ) -> A |
102 |
101
|
adantl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A |
103 |
95 84 83 97 102
|
slttrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
104 |
103
|
sgt0ne0d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR =/= 0s ) |
105 |
104
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR =/= 0s ) |
106 |
|
breq2 |
|- ( xO = xR -> ( 0s 0s |
107 |
|
oveq1 |
|- ( xO = xR -> ( xO x.s y ) = ( xR x.s y ) ) |
108 |
107
|
eqeq1d |
|- ( xO = xR -> ( ( xO x.s y ) = 1s <-> ( xR x.s y ) = 1s ) ) |
109 |
108
|
rexbidv |
|- ( xO = xR -> ( E. y e. No ( xO x.s y ) = 1s <-> E. y e. No ( xR x.s y ) = 1s ) ) |
110 |
106 109
|
imbi12d |
|- ( xO = xR -> ( ( 0s E. y e. No ( xO x.s y ) = 1s ) <-> ( 0s E. y e. No ( xR x.s y ) = 1s ) ) ) |
111 |
6
|
3ad2ant1 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
112 |
111
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
113 |
|
elun2 |
|- ( xR e. ( _Right ` A ) -> xR e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
114 |
113
|
adantl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
115 |
110 112 114
|
rspcdva |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 0s E. y e. No ( xR x.s y ) = 1s ) ) |
116 |
103 115
|
mpd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xR x.s y ) = 1s ) |
117 |
116
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xR x.s y ) = 1s ) |
118 |
78 93 94 105 117
|
divsasswd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) /su xR ) = ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
119 |
|
oveq2 |
|- ( b = yL -> ( A x.s b ) = ( A x.s yL ) ) |
120 |
119
|
breq1d |
|- ( b = yL -> ( ( A x.s b ) ( A x.s yL ) |
121 |
120
|
rspccva |
|- ( ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) |
122 |
74 121
|
sylan |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) |
123 |
122
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) |
124 |
78 91
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) e. No ) |
125 |
84 83
|
posdifsd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A 0s |
126 |
102 125
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
127 |
126
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
128 |
124 80 86 127
|
sltmul2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s yL ) ( ( xR -s A ) x.s ( A x.s yL ) ) |
129 |
123 128
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s ( A x.s yL ) ) |
130 |
86
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s 1s ) = ( xR -s A ) ) |
131 |
129 130
|
breqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s ( A x.s yL ) ) |
132 |
86 124
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s ( A x.s yL ) ) e. No ) |
133 |
78 132 94
|
sltaddsub2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A +s ( ( xR -s A ) x.s ( A x.s yL ) ) ) ( ( xR -s A ) x.s ( A x.s yL ) ) |
134 |
131 133
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A +s ( ( xR -s A ) x.s ( A x.s yL ) ) ) |
135 |
78 80 92
|
addsdid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) = ( ( A x.s 1s ) +s ( A x.s ( ( xR -s A ) x.s yL ) ) ) ) |
136 |
78
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s 1s ) = A ) |
137 |
78 86 91
|
muls12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( xR -s A ) x.s yL ) ) = ( ( xR -s A ) x.s ( A x.s yL ) ) ) |
138 |
136 137
|
oveq12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s 1s ) +s ( A x.s ( ( xR -s A ) x.s yL ) ) ) = ( A +s ( ( xR -s A ) x.s ( A x.s yL ) ) ) ) |
139 |
135 138
|
eqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) = ( A +s ( ( xR -s A ) x.s ( A x.s yL ) ) ) ) |
140 |
94
|
mulslidd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s x.s xR ) = xR ) |
141 |
134 139 140
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) |
142 |
78 93
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) e. No ) |
143 |
103
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
144 |
142 80 94 143 117
|
sltdivmul2wd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) /su xR ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) |
145 |
141 144
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) /su xR ) |
146 |
118 145
|
eqbrtrrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
147 |
|
oveq2 |
|- ( r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) -> ( A x.s r ) = ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
148 |
147
|
breq1d |
|- ( r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) -> ( ( A x.s r ) ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
149 |
146 148
|
syl5ibrcom |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) -> ( A x.s r ) |
150 |
149
|
rexlimdvva |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) -> ( A x.s r ) |
151 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
152 |
79
|
a1i |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s e. No ) |
153 |
|
leftssno |
|- ( _Left ` A ) C_ No |
154 |
|
elrabi |
|- ( xL e. { x e. ( _Left ` A ) | 0s xL e. ( _Left ` A ) ) |
155 |
154
|
adantl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL e. ( _Left ` A ) ) |
156 |
153 155
|
sselid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL e. No ) |
157 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
158 |
156 157
|
subscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL -s A ) e. No ) |
159 |
158
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL -s A ) e. No ) |
160 |
87
|
simprd |
|- ( ( ph /\ j e. _om ) -> ( R ` j ) C_ No ) |
161 |
160
|
3adant3 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( R ` j ) C_ No ) |
162 |
161
|
sselda |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yR e. No ) |
163 |
162
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yR e. No ) |
164 |
159 163
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) x.s yR ) e. No ) |
165 |
152 164
|
addscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s +s ( ( xL -s A ) x.s yR ) ) e. No ) |
166 |
156
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL e. No ) |
167 |
|
breq2 |
|- ( x = xL -> ( 0s 0s |
168 |
167
|
elrab |
|- ( xL e. { x e. ( _Left ` A ) | 0s ( xL e. ( _Left ` A ) /\ 0s |
169 |
168
|
simprbi |
|- ( xL e. { x e. ( _Left ` A ) | 0s 0s |
170 |
169
|
adantl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
171 |
170
|
sgt0ne0d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL =/= 0s ) |
172 |
171
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL =/= 0s ) |
173 |
|
breq2 |
|- ( xO = xL -> ( 0s 0s |
174 |
|
oveq1 |
|- ( xO = xL -> ( xO x.s y ) = ( xL x.s y ) ) |
175 |
174
|
eqeq1d |
|- ( xO = xL -> ( ( xO x.s y ) = 1s <-> ( xL x.s y ) = 1s ) ) |
176 |
175
|
rexbidv |
|- ( xO = xL -> ( E. y e. No ( xO x.s y ) = 1s <-> E. y e. No ( xL x.s y ) = 1s ) ) |
177 |
173 176
|
imbi12d |
|- ( xO = xL -> ( ( 0s E. y e. No ( xO x.s y ) = 1s ) <-> ( 0s E. y e. No ( xL x.s y ) = 1s ) ) ) |
178 |
111
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
179 |
|
elun1 |
|- ( xL e. ( _Left ` A ) -> xL e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
180 |
155 179
|
syl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
181 |
177 178 180
|
rspcdva |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 0s E. y e. No ( xL x.s y ) = 1s ) ) |
182 |
170 181
|
mpd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xL x.s y ) = 1s ) |
183 |
182
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xL x.s y ) = 1s ) |
184 |
151 165 166 172 183
|
divsasswd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) /su xL ) = ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
185 |
157 156
|
subscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A -s xL ) e. No ) |
186 |
185
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A -s xL ) e. No ) |
187 |
186
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A -s xL ) x.s 1s ) = ( A -s xL ) ) |
188 |
|
simp3r |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. c e. ( R ` j ) 1s |
189 |
|
oveq2 |
|- ( c = yR -> ( A x.s c ) = ( A x.s yR ) ) |
190 |
189
|
breq2d |
|- ( c = yR -> ( 1s 1s |
191 |
190
|
rspccva |
|- ( ( A. c e. ( R ` j ) 1s 1s |
192 |
188 191
|
sylan |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
193 |
192
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
194 |
151 163
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yR ) e. No ) |
195 |
|
breq1 |
|- ( xO = xL -> ( xO xL |
196 |
|
leftval |
|- ( _Left ` A ) = { xO e. ( _Old ` ( bday ` A ) ) | xO |
197 |
195 196
|
elrab2 |
|- ( xL e. ( _Left ` A ) <-> ( xL e. ( _Old ` ( bday ` A ) ) /\ xL |
198 |
197
|
simprbi |
|- ( xL e. ( _Left ` A ) -> xL |
199 |
155 198
|
syl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL |
200 |
156 157
|
posdifsd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL 0s |
201 |
199 200
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
202 |
201
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
203 |
152 194 186 202
|
sltmul2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s ( ( A -s xL ) x.s 1s ) |
204 |
193 203
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A -s xL ) x.s 1s ) |
205 |
187 204
|
eqbrtrrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A -s xL ) |
206 |
156 157
|
negsubsdi2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( xL -s A ) ) = ( A -s xL ) ) |
207 |
206
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( xL -s A ) ) = ( A -s xL ) ) |
208 |
159 194
|
mulnegs1d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yR ) ) = ( -us ` ( ( xL -s A ) x.s ( A x.s yR ) ) ) ) |
209 |
206
|
oveq1d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yR ) ) = ( ( A -s xL ) x.s ( A x.s yR ) ) ) |
210 |
209
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yR ) ) = ( ( A -s xL ) x.s ( A x.s yR ) ) ) |
211 |
208 210
|
eqtr3d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( ( xL -s A ) x.s ( A x.s yR ) ) ) = ( ( A -s xL ) x.s ( A x.s yR ) ) ) |
212 |
205 207 211
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( xL -s A ) ) |
213 |
159 194
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) x.s ( A x.s yR ) ) e. No ) |
214 |
213 159
|
sltnegd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( ( xL -s A ) x.s ( A x.s yR ) ) ( -us ` ( xL -s A ) ) |
215 |
212 214
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) x.s ( A x.s yR ) ) |
216 |
151 213 166
|
sltaddsub2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A +s ( ( xL -s A ) x.s ( A x.s yR ) ) ) ( ( xL -s A ) x.s ( A x.s yR ) ) |
217 |
215 216
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A +s ( ( xL -s A ) x.s ( A x.s yR ) ) ) |
218 |
151 152 164
|
addsdid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) = ( ( A x.s 1s ) +s ( A x.s ( ( xL -s A ) x.s yR ) ) ) ) |
219 |
151
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s 1s ) = A ) |
220 |
151 159 163
|
muls12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( xL -s A ) x.s yR ) ) = ( ( xL -s A ) x.s ( A x.s yR ) ) ) |
221 |
219 220
|
oveq12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s 1s ) +s ( A x.s ( ( xL -s A ) x.s yR ) ) ) = ( A +s ( ( xL -s A ) x.s ( A x.s yR ) ) ) ) |
222 |
218 221
|
eqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) = ( A +s ( ( xL -s A ) x.s ( A x.s yR ) ) ) ) |
223 |
166
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL x.s 1s ) = xL ) |
224 |
217 222 223
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) |
225 |
151 165
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) e. No ) |
226 |
170
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
227 |
225 152 166 226 183
|
sltdivmulwd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) /su xL ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) |
228 |
224 227
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) /su xL ) |
229 |
184 228
|
eqbrtrrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) |
230 |
|
oveq2 |
|- ( r = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) -> ( A x.s r ) = ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
231 |
230
|
breq1d |
|- ( r = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) -> ( ( A x.s r ) ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) |
232 |
229 231
|
syl5ibrcom |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) -> ( A x.s r ) |
233 |
232
|
rexlimdvva |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( E. xL e. { x e. ( _Left ` A ) | 0s ( A x.s r ) |
234 |
150 233
|
jaod |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s ( A x.s r ) |
235 |
76 234
|
jaod |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( r e. ( L ` j ) \/ ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s ( A x.s r ) |
236 |
73 235
|
sylbid |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r e. ( L ` suc j ) -> ( A x.s r ) |
237 |
236
|
ralrimiv |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. r e. ( L ` suc j ) ( A x.s r ) |
238 |
1 2 3
|
precsexlem5 |
|- ( j e. _om -> ( R ` suc j ) = ( ( R ` j ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
239 |
238
|
3ad2ant2 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( R ` suc j ) = ( ( R ` j ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
240 |
239
|
eleq2d |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s e. ( R ` suc j ) <-> s e. ( ( R ` j ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
241 |
|
elun |
|- ( s e. ( ( R ` j ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( s e. ( R ` j ) \/ s e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
242 |
|
elun |
|- ( s e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( s e. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
243 |
|
vex |
|- s e. _V |
244 |
|
eqeq1 |
|- ( a = s -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> s = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) |
245 |
244
|
2rexbidv |
|- ( a = s -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
246 |
243 245
|
elab |
|- ( s e. { a | E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
247 |
|
eqeq1 |
|- ( a = s -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
248 |
247
|
2rexbidv |
|- ( a = s -> ( E. xR e. ( _Right ` A ) E. yR e. ( R ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` j ) s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
249 |
243 248
|
elab |
|- ( s e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` j ) s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) |
250 |
246 249
|
orbi12i |
|- ( ( s e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( E. xL e. { x e. ( _Left ` A ) | 0s |
251 |
242 250
|
bitri |
|- ( s e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( E. xL e. { x e. ( _Left ` A ) | 0s |
252 |
251
|
orbi2i |
|- ( ( s e. ( R ` j ) \/ s e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( s e. ( R ` j ) \/ ( E. xL e. { x e. ( _Left ` A ) | 0s |
253 |
241 252
|
bitri |
|- ( s e. ( ( R ` j ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( s e. ( R ` j ) \/ ( E. xL e. { x e. ( _Left ` A ) | 0s |
254 |
240 253
|
bitrdi |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s e. ( R ` suc j ) <-> ( s e. ( R ` j ) \/ ( E. xL e. { x e. ( _Left ` A ) | 0s |
255 |
28
|
rspccv |
|- ( A. c e. ( R ` j ) 1s ( s e. ( R ` j ) -> 1s |
256 |
188 255
|
syl |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s e. ( R ` j ) -> 1s |
257 |
122
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) |
258 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
259 |
90
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yL e. No ) |
260 |
258 259
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) e. No ) |
261 |
79
|
a1i |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s e. No ) |
262 |
185
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A -s xL ) e. No ) |
263 |
201
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
264 |
260 261 262 263
|
sltmul2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s yL ) ( ( A -s xL ) x.s ( A x.s yL ) ) |
265 |
257 264
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A -s xL ) x.s ( A x.s yL ) ) |
266 |
262
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A -s xL ) x.s 1s ) = ( A -s xL ) ) |
267 |
265 266
|
breqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A -s xL ) x.s ( A x.s yL ) ) |
268 |
158
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL -s A ) e. No ) |
269 |
268 260
|
mulnegs1d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yL ) ) = ( -us ` ( ( xL -s A ) x.s ( A x.s yL ) ) ) ) |
270 |
206
|
oveq1d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yL ) ) = ( ( A -s xL ) x.s ( A x.s yL ) ) ) |
271 |
270
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yL ) ) = ( ( A -s xL ) x.s ( A x.s yL ) ) ) |
272 |
269 271
|
eqtr3d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( ( xL -s A ) x.s ( A x.s yL ) ) ) = ( ( A -s xL ) x.s ( A x.s yL ) ) ) |
273 |
206
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( xL -s A ) ) = ( A -s xL ) ) |
274 |
267 272 273
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( ( xL -s A ) x.s ( A x.s yL ) ) ) |
275 |
268 260
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) x.s ( A x.s yL ) ) e. No ) |
276 |
268 275
|
sltnegd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) ( -us ` ( ( xL -s A ) x.s ( A x.s yL ) ) ) |
277 |
274 276
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL -s A ) |
278 |
156
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL e. No ) |
279 |
278 258 275
|
sltsubadd2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) xL |
280 |
277 279
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL |
281 |
278
|
mulslidd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s x.s xL ) = xL ) |
282 |
268 259
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) x.s yL ) e. No ) |
283 |
258 261 282
|
addsdid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yL ) ) ) = ( ( A x.s 1s ) +s ( A x.s ( ( xL -s A ) x.s yL ) ) ) ) |
284 |
258
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s 1s ) = A ) |
285 |
258 268 259
|
muls12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( xL -s A ) x.s yL ) ) = ( ( xL -s A ) x.s ( A x.s yL ) ) ) |
286 |
284 285
|
oveq12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s 1s ) +s ( A x.s ( ( xL -s A ) x.s yL ) ) ) = ( A +s ( ( xL -s A ) x.s ( A x.s yL ) ) ) ) |
287 |
283 286
|
eqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yL ) ) ) = ( A +s ( ( xL -s A ) x.s ( A x.s yL ) ) ) ) |
288 |
280 281 287
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s x.s xL ) |
289 |
261 282
|
addscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s +s ( ( xL -s A ) x.s yL ) ) e. No ) |
290 |
258 289
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yL ) ) ) e. No ) |
291 |
170
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
292 |
182
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xL x.s y ) = 1s ) |
293 |
261 290 278 291 292
|
sltmuldivwd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( 1s x.s xL ) 1s |
294 |
288 293
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
295 |
171
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL =/= 0s ) |
296 |
258 289 278 295 292
|
divsasswd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xL -s A ) x.s yL ) ) ) /su xL ) = ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) |
297 |
294 296
|
breqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
298 |
|
oveq2 |
|- ( s = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) -> ( A x.s s ) = ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) |
299 |
298
|
breq2d |
|- ( s = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) -> ( 1s 1s |
300 |
297 299
|
syl5ibrcom |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) -> 1s |
301 |
300
|
rexlimdvva |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( E. xL e. { x e. ( _Left ` A ) | 0s 1s |
302 |
85
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xR -s A ) e. No ) |
303 |
302
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s 1s ) = ( xR -s A ) ) |
304 |
192
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
305 |
79
|
a1i |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s e. No ) |
306 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
307 |
162
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yR e. No ) |
308 |
306 307
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yR ) e. No ) |
309 |
126
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
310 |
305 308 302 309
|
sltmul2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s ( ( xR -s A ) x.s 1s ) |
311 |
304 310
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s 1s ) |
312 |
303 311
|
eqbrtrrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xR -s A ) |
313 |
83
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR e. No ) |
314 |
302 308
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s ( A x.s yR ) ) e. No ) |
315 |
313 306 314
|
sltsubadd2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) xR |
316 |
312 315
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR |
317 |
313
|
mulslidd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s x.s xR ) = xR ) |
318 |
302 307
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s yR ) e. No ) |
319 |
306 305 318
|
addsdid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yR ) ) ) = ( ( A x.s 1s ) +s ( A x.s ( ( xR -s A ) x.s yR ) ) ) ) |
320 |
306
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s 1s ) = A ) |
321 |
306 302 307
|
muls12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( xR -s A ) x.s yR ) ) = ( ( xR -s A ) x.s ( A x.s yR ) ) ) |
322 |
320 321
|
oveq12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s 1s ) +s ( A x.s ( ( xR -s A ) x.s yR ) ) ) = ( A +s ( ( xR -s A ) x.s ( A x.s yR ) ) ) ) |
323 |
319 322
|
eqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yR ) ) ) = ( A +s ( ( xR -s A ) x.s ( A x.s yR ) ) ) ) |
324 |
316 317 323
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s x.s xR ) |
325 |
305 318
|
addscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s +s ( ( xR -s A ) x.s yR ) ) e. No ) |
326 |
306 325
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yR ) ) ) e. No ) |
327 |
103
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
328 |
116
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xR x.s y ) = 1s ) |
329 |
305 326 313 327 328
|
sltmuldivwd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( 1s x.s xR ) 1s |
330 |
324 329
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
331 |
104
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR =/= 0s ) |
332 |
306 325 313 331 328
|
divsasswd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xR -s A ) x.s yR ) ) ) /su xR ) = ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
333 |
330 332
|
breqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
334 |
|
oveq2 |
|- ( s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) -> ( A x.s s ) = ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
335 |
334
|
breq2d |
|- ( s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) -> ( 1s 1s |
336 |
333 335
|
syl5ibrcom |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) -> 1s |
337 |
336
|
rexlimdvva |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( E. xR e. ( _Right ` A ) E. yR e. ( R ` j ) s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) -> 1s |
338 |
301 337
|
jaod |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( E. xL e. { x e. ( _Left ` A ) | 0s 1s |
339 |
256 338
|
jaod |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( s e. ( R ` j ) \/ ( E. xL e. { x e. ( _Left ` A ) | 0s 1s |
340 |
254 339
|
sylbid |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s e. ( R ` suc j ) -> 1s |
341 |
340
|
ralrimiv |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. s e. ( R ` suc j ) 1s |
342 |
237 341
|
jca |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A. r e. ( L ` suc j ) ( A x.s r ) |
343 |
342
|
3exp |
|- ( ph -> ( j e. _om -> ( ( A. b e. ( L ` j ) ( A x.s b ) ( A. r e. ( L ` suc j ) ( A x.s r ) |
344 |
343
|
com12 |
|- ( j e. _om -> ( ph -> ( ( A. b e. ( L ` j ) ( A x.s b ) ( A. r e. ( L ` suc j ) ( A x.s r ) |
345 |
344
|
a2d |
|- ( j e. _om -> ( ( ph -> ( A. b e. ( L ` j ) ( A x.s b ) ( ph -> ( A. r e. ( L ` suc j ) ( A x.s r ) |
346 |
12 18 32 38 56 345
|
finds |
|- ( I e. _om -> ( ph -> ( A. b e. ( L ` I ) ( A x.s b ) |
347 |
346
|
impcom |
|- ( ( ph /\ I e. _om ) -> ( A. b e. ( L ` I ) ( A x.s b ) |