Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
2 |
|
fveq2 |
|- ( p = q -> ( 1st ` p ) = ( 1st ` q ) ) |
3 |
|
fveq2 |
|- ( p = q -> ( 2nd ` p ) = ( 2nd ` q ) ) |
4 |
3
|
csbeq1d |
|- ( p = q -> [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 2nd ` q ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
5 |
2 4
|
csbeq12dv |
|- ( p = q -> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 1st ` q ) / l ]_ [_ ( 2nd ` q ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
6 |
|
rexeq |
|- ( r = s -> ( E. yR e. r a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> E. yR e. s a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
7 |
6
|
rexbidv |
|- ( r = s -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
8 |
7
|
abbidv |
|- ( r = s -> { a | E. xL e. { x e. ( _Left ` A ) | 0s |
9 |
8
|
uneq2d |
|- ( r = s -> ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
10 |
9
|
uneq2d |
|- ( r = s -> ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
11 |
|
id |
|- ( r = s -> r = s ) |
12 |
|
rexeq |
|- ( r = s -> ( E. yR e. r a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. yR e. s a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
13 |
12
|
rexbidv |
|- ( r = s -> ( E. xR e. ( _Right ` A ) E. yR e. r a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. s a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
14 |
13
|
abbidv |
|- ( r = s -> { a | E. xR e. ( _Right ` A ) E. yR e. r a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } = { a | E. xR e. ( _Right ` A ) E. yR e. s a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } ) |
15 |
14
|
uneq2d |
|- ( r = s -> ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
16 |
11 15
|
uneq12d |
|- ( r = s -> ( r u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
17 |
10 16
|
opeq12d |
|- ( r = s -> <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) |
18 |
|
eqeq1 |
|- ( a = b -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> b = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
19 |
18
|
2rexbidv |
|- ( a = b -> ( E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yL e. l b = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
20 |
|
oveq1 |
|- ( xR = zR -> ( xR -s A ) = ( zR -s A ) ) |
21 |
20
|
oveq1d |
|- ( xR = zR -> ( ( xR -s A ) x.s yL ) = ( ( zR -s A ) x.s yL ) ) |
22 |
21
|
oveq2d |
|- ( xR = zR -> ( 1s +s ( ( xR -s A ) x.s yL ) ) = ( 1s +s ( ( zR -s A ) x.s yL ) ) ) |
23 |
|
id |
|- ( xR = zR -> xR = zR ) |
24 |
22 23
|
oveq12d |
|- ( xR = zR -> ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) = ( ( 1s +s ( ( zR -s A ) x.s yL ) ) /su zR ) ) |
25 |
24
|
eqeq2d |
|- ( xR = zR -> ( b = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> b = ( ( 1s +s ( ( zR -s A ) x.s yL ) ) /su zR ) ) ) |
26 |
|
oveq2 |
|- ( yL = w -> ( ( zR -s A ) x.s yL ) = ( ( zR -s A ) x.s w ) ) |
27 |
26
|
oveq2d |
|- ( yL = w -> ( 1s +s ( ( zR -s A ) x.s yL ) ) = ( 1s +s ( ( zR -s A ) x.s w ) ) ) |
28 |
27
|
oveq1d |
|- ( yL = w -> ( ( 1s +s ( ( zR -s A ) x.s yL ) ) /su zR ) = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) ) |
29 |
28
|
eqeq2d |
|- ( yL = w -> ( b = ( ( 1s +s ( ( zR -s A ) x.s yL ) ) /su zR ) <-> b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) ) ) |
30 |
25 29
|
cbvrex2vw |
|- ( E. xR e. ( _Right ` A ) E. yL e. l b = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) ) |
31 |
19 30
|
bitrdi |
|- ( a = b -> ( E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) ) ) |
32 |
31
|
cbvabv |
|- { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } = { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } |
33 |
|
eqeq1 |
|- ( a = b -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> b = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
34 |
33
|
2rexbidv |
|- ( a = b -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
35 |
|
oveq1 |
|- ( xL = zL -> ( xL -s A ) = ( zL -s A ) ) |
36 |
35
|
oveq1d |
|- ( xL = zL -> ( ( xL -s A ) x.s yR ) = ( ( zL -s A ) x.s yR ) ) |
37 |
36
|
oveq2d |
|- ( xL = zL -> ( 1s +s ( ( xL -s A ) x.s yR ) ) = ( 1s +s ( ( zL -s A ) x.s yR ) ) ) |
38 |
|
id |
|- ( xL = zL -> xL = zL ) |
39 |
37 38
|
oveq12d |
|- ( xL = zL -> ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) = ( ( 1s +s ( ( zL -s A ) x.s yR ) ) /su zL ) ) |
40 |
39
|
eqeq2d |
|- ( xL = zL -> ( b = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> b = ( ( 1s +s ( ( zL -s A ) x.s yR ) ) /su zL ) ) ) |
41 |
|
oveq2 |
|- ( yR = t -> ( ( zL -s A ) x.s yR ) = ( ( zL -s A ) x.s t ) ) |
42 |
41
|
oveq2d |
|- ( yR = t -> ( 1s +s ( ( zL -s A ) x.s yR ) ) = ( 1s +s ( ( zL -s A ) x.s t ) ) ) |
43 |
42
|
oveq1d |
|- ( yR = t -> ( ( 1s +s ( ( zL -s A ) x.s yR ) ) /su zL ) = ( ( 1s +s ( ( zL -s A ) x.s t ) ) /su zL ) ) |
44 |
43
|
eqeq2d |
|- ( yR = t -> ( b = ( ( 1s +s ( ( zL -s A ) x.s yR ) ) /su zL ) <-> b = ( ( 1s +s ( ( zL -s A ) x.s t ) ) /su zL ) ) ) |
45 |
40 44
|
cbvrex2vw |
|- ( E. xL e. { x e. ( _Left ` A ) | 0s E. zL e. { x e. ( _Left ` A ) | 0s |
46 |
|
breq2 |
|- ( x = z -> ( 0s 0s |
47 |
46
|
cbvrabv |
|- { x e. ( _Left ` A ) | 0s |
48 |
47
|
rexeqi |
|- ( E. zL e. { x e. ( _Left ` A ) | 0s E. zL e. { z e. ( _Left ` A ) | 0s |
49 |
45 48
|
bitri |
|- ( E. xL e. { x e. ( _Left ` A ) | 0s E. zL e. { z e. ( _Left ` A ) | 0s |
50 |
34 49
|
bitrdi |
|- ( a = b -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. zL e. { z e. ( _Left ` A ) | 0s |
51 |
50
|
cbvabv |
|- { a | E. xL e. { x e. ( _Left ` A ) | 0s |
52 |
32 51
|
uneq12i |
|- ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
53 |
52
|
uneq2i |
|- ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
54 |
|
eqeq1 |
|- ( a = b -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> b = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) |
55 |
54
|
2rexbidv |
|- ( a = b -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
56 |
35
|
oveq1d |
|- ( xL = zL -> ( ( xL -s A ) x.s yL ) = ( ( zL -s A ) x.s yL ) ) |
57 |
56
|
oveq2d |
|- ( xL = zL -> ( 1s +s ( ( xL -s A ) x.s yL ) ) = ( 1s +s ( ( zL -s A ) x.s yL ) ) ) |
58 |
57 38
|
oveq12d |
|- ( xL = zL -> ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) = ( ( 1s +s ( ( zL -s A ) x.s yL ) ) /su zL ) ) |
59 |
58
|
eqeq2d |
|- ( xL = zL -> ( b = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> b = ( ( 1s +s ( ( zL -s A ) x.s yL ) ) /su zL ) ) ) |
60 |
|
oveq2 |
|- ( yL = w -> ( ( zL -s A ) x.s yL ) = ( ( zL -s A ) x.s w ) ) |
61 |
60
|
oveq2d |
|- ( yL = w -> ( 1s +s ( ( zL -s A ) x.s yL ) ) = ( 1s +s ( ( zL -s A ) x.s w ) ) ) |
62 |
61
|
oveq1d |
|- ( yL = w -> ( ( 1s +s ( ( zL -s A ) x.s yL ) ) /su zL ) = ( ( 1s +s ( ( zL -s A ) x.s w ) ) /su zL ) ) |
63 |
62
|
eqeq2d |
|- ( yL = w -> ( b = ( ( 1s +s ( ( zL -s A ) x.s yL ) ) /su zL ) <-> b = ( ( 1s +s ( ( zL -s A ) x.s w ) ) /su zL ) ) ) |
64 |
59 63
|
cbvrex2vw |
|- ( E. xL e. { x e. ( _Left ` A ) | 0s E. zL e. { x e. ( _Left ` A ) | 0s |
65 |
47
|
rexeqi |
|- ( E. zL e. { x e. ( _Left ` A ) | 0s E. zL e. { z e. ( _Left ` A ) | 0s |
66 |
64 65
|
bitri |
|- ( E. xL e. { x e. ( _Left ` A ) | 0s E. zL e. { z e. ( _Left ` A ) | 0s |
67 |
55 66
|
bitrdi |
|- ( a = b -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. zL e. { z e. ( _Left ` A ) | 0s |
68 |
67
|
cbvabv |
|- { a | E. xL e. { x e. ( _Left ` A ) | 0s |
69 |
|
eqeq1 |
|- ( a = b -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> b = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
70 |
69
|
2rexbidv |
|- ( a = b -> ( E. xR e. ( _Right ` A ) E. yR e. s a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. s b = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
71 |
20
|
oveq1d |
|- ( xR = zR -> ( ( xR -s A ) x.s yR ) = ( ( zR -s A ) x.s yR ) ) |
72 |
71
|
oveq2d |
|- ( xR = zR -> ( 1s +s ( ( xR -s A ) x.s yR ) ) = ( 1s +s ( ( zR -s A ) x.s yR ) ) ) |
73 |
72 23
|
oveq12d |
|- ( xR = zR -> ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) = ( ( 1s +s ( ( zR -s A ) x.s yR ) ) /su zR ) ) |
74 |
73
|
eqeq2d |
|- ( xR = zR -> ( b = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> b = ( ( 1s +s ( ( zR -s A ) x.s yR ) ) /su zR ) ) ) |
75 |
|
oveq2 |
|- ( yR = t -> ( ( zR -s A ) x.s yR ) = ( ( zR -s A ) x.s t ) ) |
76 |
75
|
oveq2d |
|- ( yR = t -> ( 1s +s ( ( zR -s A ) x.s yR ) ) = ( 1s +s ( ( zR -s A ) x.s t ) ) ) |
77 |
76
|
oveq1d |
|- ( yR = t -> ( ( 1s +s ( ( zR -s A ) x.s yR ) ) /su zR ) = ( ( 1s +s ( ( zR -s A ) x.s t ) ) /su zR ) ) |
78 |
77
|
eqeq2d |
|- ( yR = t -> ( b = ( ( 1s +s ( ( zR -s A ) x.s yR ) ) /su zR ) <-> b = ( ( 1s +s ( ( zR -s A ) x.s t ) ) /su zR ) ) ) |
79 |
74 78
|
cbvrex2vw |
|- ( E. xR e. ( _Right ` A ) E. yR e. s b = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. zR e. ( _Right ` A ) E. t e. s b = ( ( 1s +s ( ( zR -s A ) x.s t ) ) /su zR ) ) |
80 |
70 79
|
bitrdi |
|- ( a = b -> ( E. xR e. ( _Right ` A ) E. yR e. s a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. zR e. ( _Right ` A ) E. t e. s b = ( ( 1s +s ( ( zR -s A ) x.s t ) ) /su zR ) ) ) |
81 |
80
|
cbvabv |
|- { a | E. xR e. ( _Right ` A ) E. yR e. s a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } = { b | E. zR e. ( _Right ` A ) E. t e. s b = ( ( 1s +s ( ( zR -s A ) x.s t ) ) /su zR ) } |
82 |
68 81
|
uneq12i |
|- ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
83 |
82
|
uneq2i |
|- ( s u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
84 |
53 83
|
opeq12i |
|- <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( l u. ( { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . |
85 |
17 84
|
eqtrdi |
|- ( r = s -> <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = <. ( l u. ( { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . ) |
86 |
85
|
cbvcsbv |
|- [_ ( 2nd ` q ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 2nd ` q ) / s ]_ <. ( l u. ( { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . |
87 |
86
|
csbeq2i |
|- [_ ( 1st ` q ) / l ]_ [_ ( 2nd ` q ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 1st ` q ) / l ]_ [_ ( 2nd ` q ) / s ]_ <. ( l u. ( { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . |
88 |
|
id |
|- ( l = m -> l = m ) |
89 |
|
rexeq |
|- ( l = m -> ( E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) <-> E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) ) ) |
90 |
89
|
rexbidv |
|- ( l = m -> ( E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) <-> E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) ) ) |
91 |
90
|
abbidv |
|- ( l = m -> { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } = { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } ) |
92 |
91
|
uneq1d |
|- ( l = m -> ( { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s |
93 |
88 92
|
uneq12d |
|- ( l = m -> ( l u. ( { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s |
94 |
|
rexeq |
|- ( l = m -> ( E. w e. l b = ( ( 1s +s ( ( zL -s A ) x.s w ) ) /su zL ) <-> E. w e. m b = ( ( 1s +s ( ( zL -s A ) x.s w ) ) /su zL ) ) ) |
95 |
94
|
rexbidv |
|- ( l = m -> ( E. zL e. { z e. ( _Left ` A ) | 0s E. zL e. { z e. ( _Left ` A ) | 0s |
96 |
95
|
abbidv |
|- ( l = m -> { b | E. zL e. { z e. ( _Left ` A ) | 0s |
97 |
96
|
uneq1d |
|- ( l = m -> ( { b | E. zL e. { z e. ( _Left ` A ) | 0s |
98 |
97
|
uneq2d |
|- ( l = m -> ( s u. ( { b | E. zL e. { z e. ( _Left ` A ) | 0s |
99 |
93 98
|
opeq12d |
|- ( l = m -> <. ( l u. ( { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . = <. ( m u. ( { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . ) |
100 |
99
|
csbeq2dv |
|- ( l = m -> [_ ( 2nd ` q ) / s ]_ <. ( l u. ( { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . = [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . ) |
101 |
100
|
cbvcsbv |
|- [_ ( 1st ` q ) / l ]_ [_ ( 2nd ` q ) / s ]_ <. ( l u. ( { b | E. zR e. ( _Right ` A ) E. w e. l b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . = [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . |
102 |
87 101
|
eqtri |
|- [_ ( 1st ` q ) / l ]_ [_ ( 2nd ` q ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . |
103 |
5 102
|
eqtrdi |
|- ( p = q -> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . = [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . ) |
104 |
103
|
cbvmptv |
|- ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) = ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . ) |
105 |
|
rdgeq1 |
|- ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) = ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . ) -> rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) = rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ) |
106 |
104 105
|
ax-mp |
|- rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) = rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
107 |
1 106
|
eqtri |
|- F = rec ( ( q e. _V |-> [_ ( 1st ` q ) / m ]_ [_ ( 2nd ` q ) / s ]_ <. ( m u. ( { b | E. zR e. ( _Right ` A ) E. w e. m b = ( ( 1s +s ( ( zR -s A ) x.s w ) ) /su zR ) } u. { b | E. zL e. { z e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |