| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indifdir |  |-  ( ( A \ B ) i^i ( `' R " { X } ) ) = ( ( A i^i ( `' R " { X } ) ) \ ( B i^i ( `' R " { X } ) ) ) | 
						
							| 2 |  | df-pred |  |-  Pred ( R , ( A \ B ) , X ) = ( ( A \ B ) i^i ( `' R " { X } ) ) | 
						
							| 3 |  | df-pred |  |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) | 
						
							| 4 |  | df-pred |  |-  Pred ( R , B , X ) = ( B i^i ( `' R " { X } ) ) | 
						
							| 5 | 3 4 | difeq12i |  |-  ( Pred ( R , A , X ) \ Pred ( R , B , X ) ) = ( ( A i^i ( `' R " { X } ) ) \ ( B i^i ( `' R " { X } ) ) ) | 
						
							| 6 | 1 2 5 | 3eqtr4i |  |-  Pred ( R , ( A \ B ) , X ) = ( Pred ( R , A , X ) \ Pred ( R , B , X ) ) |