Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predel | |- ( Y e. Pred ( R , A , X ) -> Y e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 | |- ( Y e. ( A i^i ( `' R " { X } ) ) -> Y e. A ) |
|
| 2 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
| 3 | 1 2 | eleq2s | |- ( Y e. Pred ( R , A , X ) -> Y e. A ) |