| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-pred |
|- Pred ( _E , A , X ) = ( A i^i ( `' _E " { X } ) ) |
| 2 |
|
relcnv |
|- Rel `' _E |
| 3 |
|
relimasn |
|- ( Rel `' _E -> ( `' _E " { X } ) = { y | X `' _E y } ) |
| 4 |
2 3
|
ax-mp |
|- ( `' _E " { X } ) = { y | X `' _E y } |
| 5 |
|
brcnvg |
|- ( ( X e. B /\ y e. _V ) -> ( X `' _E y <-> y _E X ) ) |
| 6 |
5
|
elvd |
|- ( X e. B -> ( X `' _E y <-> y _E X ) ) |
| 7 |
|
epelg |
|- ( X e. B -> ( y _E X <-> y e. X ) ) |
| 8 |
6 7
|
bitrd |
|- ( X e. B -> ( X `' _E y <-> y e. X ) ) |
| 9 |
8
|
eqabcdv |
|- ( X e. B -> { y | X `' _E y } = X ) |
| 10 |
4 9
|
eqtrid |
|- ( X e. B -> ( `' _E " { X } ) = X ) |
| 11 |
10
|
ineq2d |
|- ( X e. B -> ( A i^i ( `' _E " { X } ) ) = ( A i^i X ) ) |
| 12 |
1 11
|
eqtrid |
|- ( X e. B -> Pred ( _E , A , X ) = ( A i^i X ) ) |