| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-pred |  |-  Pred ( _E , A , X ) = ( A i^i ( `' _E " { X } ) ) | 
						
							| 2 |  | relcnv |  |-  Rel `' _E | 
						
							| 3 |  | relimasn |  |-  ( Rel `' _E -> ( `' _E " { X } ) = { y | X `' _E y } ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( `' _E " { X } ) = { y | X `' _E y } | 
						
							| 5 |  | brcnvg |  |-  ( ( X e. B /\ y e. _V ) -> ( X `' _E y <-> y _E X ) ) | 
						
							| 6 | 5 | elvd |  |-  ( X e. B -> ( X `' _E y <-> y _E X ) ) | 
						
							| 7 |  | epelg |  |-  ( X e. B -> ( y _E X <-> y e. X ) ) | 
						
							| 8 | 6 7 | bitrd |  |-  ( X e. B -> ( X `' _E y <-> y e. X ) ) | 
						
							| 9 | 8 | eqabcdv |  |-  ( X e. B -> { y | X `' _E y } = X ) | 
						
							| 10 | 4 9 | eqtrid |  |-  ( X e. B -> ( `' _E " { X } ) = X ) | 
						
							| 11 | 10 | ineq2d |  |-  ( X e. B -> ( A i^i ( `' _E " { X } ) ) = ( A i^i X ) ) | 
						
							| 12 | 1 11 | eqtrid |  |-  ( X e. B -> Pred ( _E , A , X ) = ( A i^i X ) ) |