Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predeq1 | |- ( R = S -> Pred ( R , A , X ) = Pred ( S , A , X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- A = A |
|
| 2 | eqid | |- X = X |
|
| 3 | predeq123 | |- ( ( R = S /\ A = A /\ X = X ) -> Pred ( R , A , X ) = Pred ( S , A , X ) ) |
|
| 4 | 1 2 3 | mp3an23 | |- ( R = S -> Pred ( R , A , X ) = Pred ( S , A , X ) ) |