Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predeq2 | |- ( A = B -> Pred ( R , A , X ) = Pred ( R , B , X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- R = R | |
| 2 | eqid | |- X = X | |
| 3 | predeq123 | |- ( ( R = R /\ A = B /\ X = X ) -> Pred ( R , A , X ) = Pred ( R , B , X ) ) | |
| 4 | 1 2 3 | mp3an13 | |- ( A = B -> Pred ( R , A , X ) = Pred ( R , B , X ) ) |