Description: The predecessor class exists when A does. (Contributed by Scott Fenton, 8-Feb-2011) Generalize to closed form. (Revised by BJ, 27-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predexg | |- ( A e. V -> Pred ( R , A , X ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
| 2 | inex1g | |- ( A e. V -> ( A i^i ( `' R " { X } ) ) e. _V ) |
|
| 3 | 1 2 | eqeltrid | |- ( A e. V -> Pred ( R , A , X ) e. _V ) |