Metamath Proof Explorer


Theorem predexg

Description: The predecessor class exists when A does. (Contributed by Scott Fenton, 8-Feb-2011) Generalize to closed form. (Revised by BJ, 27-Oct-2024)

Ref Expression
Assertion predexg
|- ( A e. V -> Pred ( R , A , X ) e. _V )

Proof

Step Hyp Ref Expression
1 df-pred
 |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) )
2 inex1g
 |-  ( A e. V -> ( A i^i ( `' R " { X } ) ) e. _V )
3 1 2 eqeltrid
 |-  ( A e. V -> Pred ( R , A , X ) e. _V )