Description: The predecessor class exists when A does. (Contributed by Scott Fenton, 8-Feb-2011) Generalize to closed form. (Revised by BJ, 27-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | predexg | |- ( A e. V -> Pred ( R , A , X ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
2 | inex1g | |- ( A e. V -> ( A i^i ( `' R " { X } ) ) e. _V ) |
|
3 | 1 2 | eqeltrid | |- ( A e. V -> Pred ( R , A , X ) e. _V ) |