| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzelz |  |-  ( x e. ( M ... N ) -> x e. ZZ ) | 
						
							| 2 |  | elfzelz |  |-  ( K e. ( M ... N ) -> K e. ZZ ) | 
						
							| 3 |  | zltlem1 |  |-  ( ( x e. ZZ /\ K e. ZZ ) -> ( x < K <-> x <_ ( K - 1 ) ) ) | 
						
							| 4 | 1 2 3 | syl2anr |  |-  ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x < K <-> x <_ ( K - 1 ) ) ) | 
						
							| 5 |  | elfzuz |  |-  ( x e. ( M ... N ) -> x e. ( ZZ>= ` M ) ) | 
						
							| 6 |  | peano2zm |  |-  ( K e. ZZ -> ( K - 1 ) e. ZZ ) | 
						
							| 7 | 2 6 | syl |  |-  ( K e. ( M ... N ) -> ( K - 1 ) e. ZZ ) | 
						
							| 8 |  | elfz5 |  |-  ( ( x e. ( ZZ>= ` M ) /\ ( K - 1 ) e. ZZ ) -> ( x e. ( M ... ( K - 1 ) ) <-> x <_ ( K - 1 ) ) ) | 
						
							| 9 | 5 7 8 | syl2anr |  |-  ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x e. ( M ... ( K - 1 ) ) <-> x <_ ( K - 1 ) ) ) | 
						
							| 10 | 4 9 | bitr4d |  |-  ( ( K e. ( M ... N ) /\ x e. ( M ... N ) ) -> ( x < K <-> x e. ( M ... ( K - 1 ) ) ) ) | 
						
							| 11 | 10 | pm5.32da |  |-  ( K e. ( M ... N ) -> ( ( x e. ( M ... N ) /\ x < K ) <-> ( x e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) ) ) | 
						
							| 12 |  | vex |  |-  x e. _V | 
						
							| 13 | 12 | elpred |  |-  ( K e. ( M ... N ) -> ( x e. Pred ( < , ( M ... N ) , K ) <-> ( x e. ( M ... N ) /\ x < K ) ) ) | 
						
							| 14 |  | elfzuz3 |  |-  ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) | 
						
							| 15 | 2 | zcnd |  |-  ( K e. ( M ... N ) -> K e. CC ) | 
						
							| 16 |  | ax-1cn |  |-  1 e. CC | 
						
							| 17 |  | npcan |  |-  ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( K e. ( M ... N ) -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 19 | 18 | fveq2d |  |-  ( K e. ( M ... N ) -> ( ZZ>= ` ( ( K - 1 ) + 1 ) ) = ( ZZ>= ` K ) ) | 
						
							| 20 | 14 19 | eleqtrrd |  |-  ( K e. ( M ... N ) -> N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) | 
						
							| 21 |  | peano2uzr |  |-  ( ( ( K - 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) -> N e. ( ZZ>= ` ( K - 1 ) ) ) | 
						
							| 22 | 7 20 21 | syl2anc |  |-  ( K e. ( M ... N ) -> N e. ( ZZ>= ` ( K - 1 ) ) ) | 
						
							| 23 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( K - 1 ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( K e. ( M ... N ) -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) | 
						
							| 25 | 24 | sseld |  |-  ( K e. ( M ... N ) -> ( x e. ( M ... ( K - 1 ) ) -> x e. ( M ... N ) ) ) | 
						
							| 26 | 25 | pm4.71rd |  |-  ( K e. ( M ... N ) -> ( x e. ( M ... ( K - 1 ) ) <-> ( x e. ( M ... N ) /\ x e. ( M ... ( K - 1 ) ) ) ) ) | 
						
							| 27 | 11 13 26 | 3bitr4d |  |-  ( K e. ( M ... N ) -> ( x e. Pred ( < , ( M ... N ) , K ) <-> x e. ( M ... ( K - 1 ) ) ) ) | 
						
							| 28 | 27 | eqrdv |  |-  ( K e. ( M ... N ) -> Pred ( < , ( M ... N ) , K ) = ( M ... ( K - 1 ) ) ) |