| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-pred |  |-  Pred ( R , Pred ( R , A , X ) , X ) = ( Pred ( R , A , X ) i^i ( `' R " { X } ) ) | 
						
							| 2 |  | df-pred |  |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) | 
						
							| 3 |  | inidm |  |-  ( ( `' R " { X } ) i^i ( `' R " { X } ) ) = ( `' R " { X } ) | 
						
							| 4 | 3 | ineq2i |  |-  ( A i^i ( ( `' R " { X } ) i^i ( `' R " { X } ) ) ) = ( A i^i ( `' R " { X } ) ) | 
						
							| 5 | 2 4 | eqtr4i |  |-  Pred ( R , A , X ) = ( A i^i ( ( `' R " { X } ) i^i ( `' R " { X } ) ) ) | 
						
							| 6 |  | inass |  |-  ( ( A i^i ( `' R " { X } ) ) i^i ( `' R " { X } ) ) = ( A i^i ( ( `' R " { X } ) i^i ( `' R " { X } ) ) ) | 
						
							| 7 | 5 6 | eqtr4i |  |-  Pred ( R , A , X ) = ( ( A i^i ( `' R " { X } ) ) i^i ( `' R " { X } ) ) | 
						
							| 8 | 2 | ineq1i |  |-  ( Pred ( R , A , X ) i^i ( `' R " { X } ) ) = ( ( A i^i ( `' R " { X } ) ) i^i ( `' R " { X } ) ) | 
						
							| 9 | 7 8 | eqtr4i |  |-  Pred ( R , A , X ) = ( Pred ( R , A , X ) i^i ( `' R " { X } ) ) | 
						
							| 10 | 1 9 | eqtr4i |  |-  Pred ( R , Pred ( R , A , X ) , X ) = Pred ( R , A , X ) |